Zhengxi Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917173/publications.pdf

Version: 2024-02-01

		1040056	940533
16	383	9	16
papers	citations	h-index	g-index
16	16	16	465
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight. BMC Plant Biology, 2022, 22, 3.	3.6	11
2	Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. International Journal of Molecular Sciences, 2022, 23, 2280.	4.1	11
3	Identification of Wheat LACCASEs in Response to Fusarium graminearum as Potential Deoxynivalenol Trappers. Frontiers in Plant Science, 2022, 13, 832800.	3.6	3
4	The miR156bâ€GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytologist, 2022, 233, 1881-1899.	7.3	23
5	Mycotoxin DON Accumulation in Wheat Grains Caused by Fusarium Head Blight Are Significantly Subjected to Inoculation Methods. Toxins, 2022, 14, 409.	3.4	2
6	Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop Journal, 2021, 9, 739-749.	5.2	54
7	Basal Rachis Internode Injection: A Novel Inoculation Method to Evaluate Wheat Resistance to Fusarium Head Blight. Phytopathology, 2021, 111, 1670-1674.	2.2	4
8	A Heterozygous Genotype-Dependent Branched-Spike Wheat and the Potential Genetic Mechanism Revealed by Transcriptome Sequencing. Biology, 2021, 10, 437.	2.8	1
9	Two Different Inoculation Methods Unveiled the Relative Independence of DON Accumulation in Wheat Kernels from Disease Severity on Spike after Infection by Fusarium Head Blight. Toxins, 2021, 13, 353.	3.4	3
10	The Effects of Selenium on Wheat Fusarium Head Blight and DON Accumulation Were Selenium Compound-Dependent. Toxins, 2020, 12, 573.	3.4	11
11	Development of an Evaluation System for <i>Fusarium</i> Resistance in Wheat Grains and Its Application in Assessment of the Corresponding Effects of <i>Fhb1</i> . Plant Disease, 2020, 104, 2210-2216.	1.4	9
12	A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation ofÂNodulation Pathways in Soybean. Molecular Plant, 2019, 12, 1211-1226.	8.3	54
13	Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of <i>GmmiR156b</i> Plant Biotechnology Journal, 2019, 17, 50-62.	8.3	78
14	Identification of conserved genes involved in nitrogen metabolic activities in wheat. PeerJ, 2019, 7, e7281.	2.0	17
15	GmTIR1/GmAFB3â€based auxin perception regulated by miR393 modulates soybean nodulation. New Phytologist, 2017, 215, 672-686.	7.3	65
16	The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology, 2017, 17, 229.	3.6	37