
Zhengxi Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917173/publications.pdf Version: 2024-02-01

7HENCYL SUN

#	Article	IF	CITATIONS
1	Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of <i>GmmiR156b</i> . Plant Biotechnology Journal, 2019, 17, 50-62.	8.3	78
2	GmTIR1/GmAFB3â€based auxin perception regulated by miR393 modulates soybean nodulation. New Phytologist, 2017, 215, 672-686.	7.3	65
3	A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation ofÂNodulation Pathways in Soybean. Molecular Plant, 2019, 12, 1211-1226.	8.3	54
4	Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop Journal, 2021, 9, 739-749.	5.2	54
5	The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology, 2017, 17, 229.	3.6	37
6	The miR156bâ€GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytologist, 2022, 233, 1881-1899.	7.3	23
7	Identification of conserved genes involved in nitrogen metabolic activities in wheat. PeerJ, 2019, 7, e7281.	2.0	17
8	The Effects of Selenium on Wheat Fusarium Head Blight and DON Accumulation Were Selenium Compound-Dependent. Toxins, 2020, 12, 573.	3.4	11
9	tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight. BMC Plant Biology, 2022, 22, 3.	3.6	11
10	Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. International Journal of Molecular Sciences, 2022, 23, 2280.	4.1	11
11	Development of an Evaluation System for <i>Fusarium</i> Resistance in Wheat Grains and Its Application in Assessment of the Corresponding Effects of <i>Fhb1</i> . Plant Disease, 2020, 104, 2210-2216.	1.4	9
12	Basal Rachis Internode Injection: A Novel Inoculation Method to Evaluate Wheat Resistance to Fusarium Head Blight. Phytopathology, 2021, 111, 1670-1674.	2.2	4
13	Two Different Inoculation Methods Unveiled the Relative Independence of DON Accumulation in Wheat Kernels from Disease Severity on Spike after Infection by Fusarium Head Blight. Toxins, 2021, 13, 353.	3.4	3
14	Identification of Wheat LACCASEs in Response to Fusarium graminearum as Potential Deoxynivalenol Trappers. Frontiers in Plant Science, 2022, 13, 832800.	3.6	3
15	Mycotoxin DON Accumulation in Wheat Grains Caused by Fusarium Head Blight Are Significantly Subjected to Inoculation Methods. Toxins, 2022, 14, 409.	3.4	2
16	A Heterozygous Genotype-Dependent Branched-Spike Wheat and the Potential Genetic Mechanism Revealed by Transcriptome Sequencing. Biology, 2021, 10, 437.	2.8	1