Latif Rachdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916733/publications.pdf

Version: 2024-02-01

30	1,257	18	28
papers	citations	h-index	g-index
33	33	33	2123
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gut mucosa alterations and loss of segmented filamentous bacteria in type 1 diabetes are associated with inflammation rather than hyperglycaemia. Gut, 2022, 71 , 296-308.	12.1	14
2	Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells, 2022, 11, 924.	4.1	1
3	Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse. Cells, 2022, 11, 1737.	4.1	5
4	Culture, differentiation, and transduction of mouse E12.5 pancreatic spheres: anin vitromodel for the secondary transition of pancreas development. Islets, 2021, 13, 10-23.	1.8	0
5	Glucose treatment of human pancreatic \hat{l}^2 -cells enhances translation of mRNAs involved in energetics and insulin secretion. Journal of Biological Chemistry, 2021, 297, 100839.	3.4	6
6	Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Scientific Reports, 2020, 10, 13469.	3.3	22
7	Bromodomain and Extra Terminal Proteins Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes, 2019, 68, db180224.	0.6	13
8	MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic \hat{l}^2 -Cells. Diabetes, 2018, 67, 461-472.	0.6	36
9	Increased levels of inflammatory plasma markers and obesity risk in a mouse model of Down syndrome. Free Radical Biology and Medicine, 2018, 114, 122-130.	2.9	21
10	Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances \hat{l}^2 -cell function of obese Zucker rats. Molecular Metabolism, 2018, 8, 23-36.	6.5	51
11	DYRK1A BAC Transgenic Mouse: A New Model of Thyroid Dysgenesis in Down Syndrome. Endocrinology, 2015, 156, 1171-1180.	2.8	20
12	Dyrk1A induces pancreatic \hat{l}^2 cell mass expansion and improves glucose tolerance. Cell Cycle, 2014, 13, 2221-2229.	2.6	44
13	Dyrk1a haploinsufficiency induces diabetes in mice through decreased pancreatic beta cell mass. Diabetologia, 2014, 57, 960-969.	6.3	33
14	Development of a conditionally immortalized human pancreatic \hat{l}^2 cell line. Journal of Clinical Investigation, 2014, 124, 2087-2098.	8.2	165
15	mTOR-dependent proliferation defect in human ES-derived neural stem cells affected by Myotonic Dystrophy Type1. Journal of Cell Science, 2013, 126, 1763-72.	2.0	35
16	Concise Review: In Search of Unlimited Sources of Functional Human Pancreatic Beta Cells. Stem Cells Translational Medicine, 2013, 2, 61-67.	3.3	21
17	Fetal Pancreas Transplants Are Dependent on Prolactin for Their Development and Prevent Type 1 Diabetes in Syngeneic but Not Allogeneic Mice. Diabetes, 2013, 62, 1646-1655.	0.6	6
18	$<$ scp> $ < $ scp>-Leucine Alters Pancreatic \hat{l}^2 -Cell Differentiation and Function via the mTor Signaling Pathway. Diabetes, 2012, 61, 409-417.	0.6	48

#	Article	IF	CITATIONS
19	GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia, 2012, 55, 2845-2847.	6.3	53
20	Enhanced beta cell proliferation in mice overexpressing a constitutively active form of Akt and one allele of p21 Cip. Diabetologia, 2012, 55, 1380-1389.	6.3	20
21	Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development. PLoS ONE, 2011, 6, e16752.	2.5	40
22	Specific maternal microchimeric T cells targeting fetal antigens in \hat{l}^2 cells predispose to auto-immune diabetes in the child. Journal of Autoimmunity, 2011, 36, 253-262.	6.5	33
23	Peptideâ€mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB Journal, 2008, 22, 561-568.	0.5	19
24	Disruption of Tsc2 in pancreatic \hat{l}^2 cells induces \hat{l}^2 cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9250-9255.	7.1	175
25	Regulation of $\hat{l}^2 \hat{a} \in cell$ mass and function by the Akt/protein kinase B signalling pathway. Diabetes, Obesity and Metabolism, 2007, 9, 147-157.	4.4	76
26	Differential Effects of p27 in Regulation of Â-Cell Mass During Development, Neonatal Period, and Adult Life. Diabetes, 2006, 55, 3520-3528.	0.6	50
27	Role for VPAC2 Receptor-Mediated Signals in Pancreas Development. Diabetes, 2003, 52, 85-92.	0.6	18
28	Expression of the Receptor Tyrosine Kinase KIT in Mature Â-Cells and in the Pancreas in Development. Diabetes, 2001, 50, 2021-2028.	0.6	46
29	Quand les bactéries modulent leur vitesse d'évolution selon l'environnement Medecine/Sciences, 2001, 17, 514.	0.2	0
30	Escherichia coli molecular phylogeny using the incongruence length difference test. Molecular Biology and Evolution, 1998, 15, 1685-1695.	8.9	186