
Magdalena Wojtczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2001, 110, 2045-2064.	1.1	161
2	Effect of loudness recruitment on the perception of amplitude modulation. Journal of the Acoustical Society of America, 1996, 100, 481-489.	1.1	127
3	Weak Middle-Ear-Muscle Reflex in Humans with Noise-Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. ENeuro, 2017, 4, ENEURO.0363-17.2017.	1.9	72
4	Forward masking of amplitude modulation: Basic characteristics. Journal of the Acoustical Society of America, 2005, 118, 3198-3210.	1.1	57
5	Effects of Age on Cortical Tracking of Word-Level Features of Continuous Competing Speech. Frontiers in Neuroscience, 2021, 15, 635126.	2.8	36
6	Pitfalls in behavioral estimates of basilar-membrane compression in humans. Journal of the Acoustical Society of America, 2009, 125, 270-281.	1.1	32
7	Intensity discrimination and detection of amplitude modulation. Journal of the Acoustical Society of America, 1999, 106, 1917-1924.	1.1	28
8	Perception of across-frequency asynchrony and the role of cochlear delays. Journal of the Acoustical Society of America, 2012, 131, 363-377.	1.1	25
9	Forward Masking in the Amplitude-Modulation Domain for Tone Carriers: Psychophysical Results and Physiological Correlates. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 361-373.	1.8	24
10	The effect of basilar-membrane nonlinearity on the shapes of masking period patterns in normal and impaired hearing. Journal of the Acoustical Society of America, 2001, 109, 1571-1586.	1.1	21
11	Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 2010, 128, 247-256.	1.1	20
12	Suprathreshold effects of adaptation produced by amplitude modulation. Journal of the Acoustical Society of America, 2003, 114, 991-997.	1.1	18
13	On- and Off-Frequency Forward Masking by Schroeder-Phase Complexes. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 595-607.	1.8	16
14	Exploring the Role of Medial Olivocochlear Efferents on the Detection of Amplitude Modulation for Tones Presented in Noise. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 395-413.	1.8	14
15	Intensity discrimination and increment detection in cochlear-implant users. Journal of the Acoustical Society of America, 2003, 114, 396-407.	1.1	13
16	Stimulus Frequency Otoacoustic Emissions Provide No Evidence for the Role of Efferents in the Enhancement Effect. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 613-629.	1.8	12
17	Examining replicability of an otoacoustic measure of cochlear function during selective attention. Journal of the Acoustical Society of America, 2018, 144, 2882-2895.	1.1	11
18	Rhythm judgments reveal a frequency asymmetry in the perception and neural coding of sound synchrony. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1201-1206.	7.1	10

#	Article	IF	CITATIONS
19	No effects of attention or visual perceptual load on cochlear function, as measured with stimulus-frequency otoacoustic emissions. Journal of the Acoustical Society of America, 2019, 146, 1475-1491.	1.1	10
20	Perception of suprathreshold amplitude modulation and intensity increments: Weber's law revisited. Journal of the Acoustical Society of America, 2008, 123, 2220-2236.	1.1	9
21	Auditory enhancement under simultaneous masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2018, 143, 901-910.	1.1	9
22	Effects of fast-acting high-frequency compression on the intelligibility of speech in steady and fluctuating background sounds. International Journal of Audiology, 1997, 31, 257-273.	0.7	8
23	Exploring the Role of Feedback-Based Auditory Reflexes in Forward Masking by Schroeder-Phase Complexes. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 81-99.	1.8	8
24	The search for correlates of age-related cochlear synaptopathy: Measures of temporal envelope processing and spatial release from speech-on-speech masking. Hearing Research, 2021, 409, 108333.	2.0	8
25	The effect of carrier level on tuning in amplitude-modulation masking. Journal of the Acoustical Society of America, 2011, 130, 3916-3925.	1.1	7
26	Forward masking of frequency modulation. Journal of the Acoustical Society of America, 2012, 132, 3375-3386.	1.1	5
27	Effects of temporal stimulus properties on the perception of across-frequency asynchrony. Journal of the Acoustical Society of America, 2013, 133, 982-997.	1.1	5
28	Perception of Across-Frequency Asynchrony by Listeners with Cochlear Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 573-589.	1.8	1
29	Effects of noise precursors on the detection of amplitude and frequency modulation for tones in noise. Journal of the Acoustical Society of America, 2020, 148, 3581-3597.	1.1	0