
Wolfgang Kiessling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2916204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of the Cretaceous olistostromes in the Oman mountains (Sultanate of Oman): Evidence from clay minerals. Journal of African Earth Sciences, 2022, 191, 104547.	0.9	1
2	Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters, 2022, 25, 1497-1509.	3.0	6
3	Fast-growing species shape the evolution of reef corals. Nature Communications, 2022, 13, 2426.	5.8	10
4	Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. Global Change Biology, 2021, 27, 868-878.	4.2	13
5	Extinction risk controlled by interaction of long-term and short-term climate change. Nature Ecology and Evolution, 2021, 5, 304-310.	3.4	15
6	Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 2021, 257, 109070.	1.9	120
7	Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecology and Biogeography, 2021, 30, 1597-1608.	2.7	11
8	Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210545.	1.2	8
9	Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211342.	1.2	7
10	Deep-time climate legacies affect origination rates of marine genera. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2105769118.	3.3	2
11	Not all biodiversity rich spots are climate refugia. Biogeosciences, 2021, 18, 6567-6578.	1.3	5
12	Fossil liberation: a model to explain high biodiversity in the Triassic Cassian Formation. Palaeontology, 2020, 63, 85-102.	1.0	16
13	Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology, 2020, 30, 115-121.e5.	1.8	17
14	Increased extinction in the emergence of novel ecological communities. Science, 2020, 370, 220-222.	6.0	24
15	Reef-building red algae from an uppermost Permian reef complex as a fossil analogue of modern coralline algal ridges. Facies, 2020, 66, 1.	0.7	1
16	A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Scientific Reports, 2020, 10, 17748.	1.6	17
17	Past and future decline of tropical pelagic biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12891-12896.	3.3	67
18	Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 2020, 29, 1280-1282.	2.7	1

#	Article	IF	CITATIONS
19	Marine clade sensitivities to climate change conform across timescales. Nature Climate Change, 2020, 10, 249-253.	8.1	32
20	Drivers of beta diversity in modern and ancient reef-associated soft-bottom environments. PeerJ, 2020, 8, e9139.	0.9	5
21	STABISODB – A STABLE ISOTOPE DATABASE FOR EARTH SYSTEM RESEARCH. , 2020, , .		0
22	THE EFFECTS OF SAMPLING ON EXTINCTION SELECTIVITY IN DEEP TIME. , 2020, , .		0
23	CORALLITE SIZES AND THEIR LINK TO EXTINCTION RISK OF SCLERACTINIAN CORALS ACROSS THE TRIASSIC-JURASSIC BOUNDARY. , 2020, , .		1
24	MARINE VICTIMS OF ANCIENT HYPERTHERMALS: CLADES, TRAITS AND A REVOLUTION. , 2020, , .		0
25	MISMATCHES OF THREAT STATUS AND ACTUAL EXTINCTIONS IN QUATERNARY REEF CORALS. , 2020, , .		0
26	CONTRASTING THE EMERGENCE PATTERNS OF PAST AND PRESENT NOVEL ECOLOGICAL COMMUNITIES. , 2020, , .		0
27	Jurassic shift from abiotic to biotic control on marine ecological success. Nature Geoscience, 2019, 12, 638-642.	5.4	27
28	Addressing priority questions of conservation science with palaeontological data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190222.	1.8	20
29	The <scp>r</scp> package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution, 2019, 10, 735-743.	2.2	73
30	Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology, 2019, 45, 70-84.	1.3	29
31	TURNOVER RATES OF PALEOZOIC AND MODERN TAXA DURING THE LATE PALEOZOIC ICE AGE. , 2019, , .		0
32	SPATIO-TEMPORAL DIVERSITY DYNAMICS IN NORIAN (LATE TRIASSIC) GOSAUKAMM PATCH REEFS IN AUSTRIA. , 2019, , .		0
33	Reliable estimates of beta diversity with incomplete sampling. Ecology, 2018, 99, 1051-1062.	1.5	20
34	Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 2018, 27, 704-713.	2.7	24
35	The biogeographical imprint of mass extinctions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180232.	1.2	27
36	New constraints on the last aragonite–calcite sea transition from early Jurassic ooids. Facies, 2018, 64, 1.	0.7	12

#	Article	IF	CITATIONS
37	Pre–mass extinction decline of latest Permian ammonoids. Geology, 2018, 46, 283-286.	2.0	30
38	ERLANGEN: The Erlangen Paleobiology Collections. Natural History Collections, 2018, , 189-192.	0.1	0
39	The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography, 2018, 27, 1106-1120.	2.7	13
40	History and development of ABCDEFG: a data standard for geosciences. Fossil Record, 2018, 21, 47-53.	0.5	4
41	PRESERVATION OF MACROECOLOGICAL AND MACROEVOLUTIONARY SIGNALS WITHIN CEPHALOPOD BODY-SIZE DISTRIBUTIONS ACROSS TIME. , 2018, , .		Ο
42	ECOLOGICAL AND EVOLUTIONARY DRIVERS OF TEMPORAL VARIATIONS IN BODY SIZE. , 2018, , .		0
43	The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge– <i>Calathium</i> reefs. Lethaia, 2017, 50, 140-148.	0.6	30
44	Towards a new paleotemperature proxy from reef coral occurrences. Scientific Reports, 2017, 7, 10461.	1.6	8
45	RELIABLE ESTIMATES OF BETA DIVERSITY WITH INCOMPLETE SAMPLING. , 2017, , .		Ο
46	PRE-MASS EXTINCTION DECLINE OF LATEST PERMIAN AMMONOIDS. , 2017, , .		0
47	DETERMINANTS OF BENTHIC BIOGEOGRAPHY IN THE OCEANS. , 2017, , .		Ο
48	Are coral reefs victims of their own past success?. Science Advances, 2016, 2, e1500850.	4.7	49
49	Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors. Facies, 2016, 62, 1.	0.7	9
50	Adding fossil occupancy trajectories to the assessment of modern extinction risk. Biology Letters, 2016, 12, 20150813.	1.0	13
51	Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 2016, 6, 83-88.	8.1	405
52	RANGE AND CHANGE: THE ROLE OF CHANGING OCCUPANCY IN PREDICTING EXTINCTION RISK. , 2016, , .		0
53	Biodiversity research: data without theoryââ,¬â€ŧheory without data. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	13
54	Diversity partitioning during the Cambrian radiation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4702-4706.	3.3	68

#	Article	IF	CITATIONS
55	Allogenic succession in Late Ordovician reefs from southeast China: a response to the Cathaysian orogeny. Estonian Journal of Earth Sciences, 2015, 64, 68.	0.4	4
56	Early Ordovician lithistid sponge– Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 425, 84-96.	1.0	38
57	RESEARCH FOCUS: Fuzzy seas. Geology, 2015, 43, 191-192.	2.0	4
58	The first sphinctozoan-bearing reef from an Ordovician back-arc basin. Facies, 2015, 61, 1.	0.7	7
59	Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology, 2015, 41, 402-414.	1.3	27
60	Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7207-7212.	3.3	46
61	Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10623-10628.	3.3	63
62	Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 2015, 24, 64-76.	2.7	45
63	Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nature Communications, 2015, 6, 7966.	5.8	66
64	Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications, 2015, 6, 8890.	5.8	60
65	Rebuilding Biodiversity of Patagonian Marine Molluscs after the End-Cretaceous Mass Extinction. PLoS ONE, 2014, 9, e102629.	1.1	19
66	Differential niche dynamics among major marine invertebrate clades. Ecology Letters, 2014, 17, 314-323.	3.0	34
67	Early Ordovician sponge- <i>Calathium</i> -microbial reefs on the Yangtze Platform margin of the South China Block. Gff, 2014, 136, 157-161.	0.4	18
68	Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Current Opinion in Environmental Sustainability, 2014, 7, 52-58.	3.1	56
69	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
70	Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction. Paleobiology, 2014, 40, 625-639.	1.3	18
71	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	8.1	1,602
72	Environmentally controlled succession in a late Pleistocene coral reef (Sinai, Egypt). Coral Reefs, 2013, 32, 49-58.	0.9	13

#	Article	IF	CITATIONS
73	Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs. Journal of Biogeography, 2013, 40, 790-799.	1.4	11
74	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	1.0	60
75	Invasive Species Unchecked by Climate—Response. Science, 2012, 335, 538-539.	6.0	3
76	Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21378-21383.	3.3	90
77	Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina. Cretaceous Research, 2012, 36, 37-57.	0.6	62
78	The Geological Record of Ocean Acidification. Science, 2012, 335, 1058-1063.	6.0	828
79	Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology, 2012, 38, 187-204.	1.3	18
80	Phanerozoic Marine Biodiversity: A Fresh Look at Data, Methods, Patterns and Processes. , 2012, , 3-22.		25
81	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
82	Patterns and Processes of Ancient Reef Crises. The Paleontological Society Papers, 2011, 17, 1-14.	0.8	4
83	On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 2011, 17, 56-67.	4.2	202
84	EVOLUTIONARY DIVERSIFICATION OF REEF CORALS: A COMPARISON OF THE MOLECULAR AND FOSSIL RECORDS. Evolution; International Journal of Organic Evolution, 2011, 65, 3274-3284.	1.1	70
85	Trajectories of Late Permian - Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record, 2011, 14, 95-101.	0.4	4
86	Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. Journal of African Earth Sciences, 2011, 59, 195-214.	0.9	26
87	The Devonian nekton revolution. Lethaia, 2010, 43, 465-477.	0.6	147
88	The role of extinction in large-scale diversity–stability relationships. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1451-1456.	1.2	9
89	Response—Cretaceous Extinctions. Science, 2010, 328, 975-976.	6.0	16
90	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	6.0	1,140

#	Article	IF	CITATIONS
91	Reefs as Cradles of Evolution and Sources of Biodiversity in the Phanerozoic. Science, 2010, 327, 196-198.	6.0	151
92	Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290, 11-19.	1.0	68
93	Promoting marine origination. Nature Geoscience, 2010, 3, 388-389.	5.4	2
94	An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. Palaios, 2009, 24, 657-671.	0.6	48
95	First record of coralline demosponges in the Pleistocene: implications for reef ecology. Coral Reefs, 2009, 28, 867-870.	0.9	10
96	Re-description and neotypification of <i>Archamphiroa jurassica</i> Steinmann 1930, a calcareous red alga from the Jurassic of Argentina. Journal of Paleontology, 2009, 83, 962-968.	0.5	3
97	Geologic and Biologic Controls on the Evolution of Reefs. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 173-192.	3.8	172
98	Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology, 2009, 35, 612-630.	1.3	35
99	Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 945-951.	1.2	69
100	Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience, 2008, 1, 527-530.	5.4	75
101	Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 2008, 321, 97-100.	6.0	643
102	Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record, 2008, 11, 7-18.	0.4	15
103	Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time. Paleobiology, 2007, 33, 414-434.	1.3	82
104	The effects of taxonomic standardization on sampling-standardized estimates of historical diversity. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 439-444.	1.2	35
105	Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244, 201-222.	1.0	168
106	Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections. Geology, 2007, 35, 227.	2.0	43
107	Geographical distribution and extinction risk: lessons from Triassic?Jurassic marine benthic organisms. Journal of Biogeography, 2007, 34, 1473-1489.	1.4	123
108	Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time. Paleobiology, 2007, 33, 414-434.	1.3	23

#	Article	IF	CITATIONS
109	Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 2006, 32, 533-561.	1.3	77
110	Statistical Independence of Escalatory Ecological Trends in Phanerozoic Marine Invertebrates. Science, 2006, 312, 897-900.	6.0	77
111	Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology, 2006, 32, 259-277.	1.3	98
112	PALEOECOLOGY: Life's Complexity Cast in Stone. Science, 2006, 314, 1254-1255.	6.0	1
113	Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences, 2006, 3, 15-27.	1.3	20
114	Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 2005, 433, 410-413.	13.7	77
115	Habitat effects and sampling bias on Phanerozoic reef distribution. Facies, 2005, 51, 24-32.	0.7	16
116	Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina). Facies, 2005, 51, 233-241.	0.7	13
117	A tsunami deposit at the Cretaceous/Paleogene boundary in the Neuquén Basin of Argentina. Cretaceous Research, 2005, 26, 283-297.	0.6	43
118	Late Jurassic fishes from Longing Gap, Antarctic Peninsula. Journal of Vertebrate Paleontology, 2004, 24, 41-55.	0.4	37
119	Mesozoic–Cenozoic bioevents. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 179-180.	1.0	0
120	Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 195-223.	1.0	82
121	Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 2003, 36, 195-225.	0.6	162
122	Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology, 2003, 31, 961.	2.0	63
123	Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. , 2002, , .		62
124	A Geographic Database Approach to the KT Boundary. Impact Studies, 2002, , 83-140.	0.2	5
125	Radiolarian diversity patterns in the latest Jurassic–earliest Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 187, 179-206.	1.0	18

126 A NEW LOOK AT ANCIENT REEFS. , 2002, , 3-10.

#	Article	IF	CITATIONS
127	PHANEROZOIC TIME SCALE AND DEFINITION OF TIME SLICES. , 2002, , 11-20.		25
128	PALEOREEFS—A DATABASE ON PHANEROZOIC REEFS. , 2002, , 77-92.		27
129	SECULAR VARIATIONS IN THE PHANEROZOIC REEF ECOSYSTEM. , 2002, , 625-690.		68
130	PATTERNS OF PHANEROZOIC REEF CRISES. , 2002, , 691-733.		65
131	FROM PATTERNS TO PROCESSES: THE FUTURE OF REEF RESEARCH. , 2002, , 735-743.		4
132	Diagenesis of Upper Jurassic Concretions from the Antarctic Peninsula. Journal of Sedimentary Research, 2001, 71, 88-100.	0.8	15
133	Paleoclimatic significance of Phanerozoic reefs. Geology, 2001, 29, 751.	2.0	94
134	Phanerozoic Reef Trends Based on the Paleoreef Database. Topics in Geobiology, 2001, , 41-88.	0.6	13
135	Fluctuations in the carbonate production of Phanerozoic reefs. Geological Society Special Publication, 2000, 178, 191-215.	0.8	22
136	Late paleozoic and Late Triassic limestones from north Palawan Block (Philippines): Microfacies and paleogeographical implications. Facies, 2000, 43, 39-77.	0.7	39
137	Late Jurassic Radiolarians from the Antarctic Peninsula. Micropaleontology, 1999, 45, 1.	0.3	60
138	Facies characterization of mid-mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies, 1996, 35, 237-274.	0.7	30
139	New radiolarians from the earliest Cretaceous of the Sultanate of Oman (Wahrah Formation, Jebel) Tj ETQq1 1 0.	784314 rş 0.8	gBT_/Overloci
140	Palaeontological and facial features of the Upper Jurassic Hochstegen Marble (Tauern Window,) Tj ETQq0 0 0 rgE	3T /Oyerloo	ck 10 Tf 50 2 18
141	Reefs. , 1978, , 909-913.		1
142	Using abundance data to assess the relative role of sampling biases and evolutionary 2 radiations in Upper Muschelkalk ammonoids. Acta Palaeontologica Polonica, 0, , .	0.4	0
143	Biodiversity of museum and bulk field samples compared: The Chiampo sponge fauna (Eocene, Lessini) Tj ETQq1	1 0.78431 0.4	14 rgBT /Ove