Nasiara Karim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915829/publications.pdf

Version: 2024-02-01

516710 580821 28 658 16 25 h-index citations g-index papers 29 29 29 997 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Anti-diabetic potential of \hat{l}^2 -boswellic acid and 11 -keto- \hat{l}^2 -boswellic acid: Mechanistic insights from computational and biochemical approaches. Biomedicine and Pharmacotherapy, 2022, 147, 112669.	5.6	11
2	Involvement of selective GABA-A receptor subtypes in amelioration of cisplatin-induced neuropathic pain by 2'-chloro-6-methyl flavone (2'-Cl-6MF). Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 929-940.	3.0	2
3	Stigmasterol can be new steroidal drug for neurological disorders: Evidence of the GABAergic mechanism via receptor modulation. Phytomedicine, 2021, 90, 153646.	5. 3	28
4	Myrrhanone B and Myrrhanol B from resin of Commipohora mukul exhibit hepatoprotective effects in-vivo. Biomedicine and Pharmacotherapy, 2021, 143, 112131.	5.6	3
5	AE Succinimide, an Analogue of Methyllycaconitine, When Bound Generates a Nonconducting Conformation of the $\hat{l}\pm4\hat{l}^2$ 2 Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2020, 11, 344-355.	3.5	3
6	Evaluation of neuroprotective and anti-amnesic effects of Elaeagnus umbellata Thunb. On scopolamine-induced memory impairment in mice. BMC Complementary Medicine and Therapies, 2020, 20, 143.	2.7	38
7	In-vitro and in-silico anticancer potential of taxoids from Taxus wallichiana Zucc. Biologia Futura, 2020, 70, 295-300.	1.4	5
8	An Increasing Role of Polyphenols as Novel Therapeutics for Alzheimer's: A Review. Medicinal Chemistry, 2020, 16, 1007-1021.	1.5	10
9	Evidence for the involvement of a GABAergic mechanism in the effectiveness of natural and synthetically modified incensole derivatives in neuropharmacological disorders: A computational and pharmacological approach. Phytochemistry, 2019, 163, 58-74.	2.9	9
10	Anti-nociceptive and Anti-inflammatory Activities of Asparacosin A Involve Selective Cyclooxygenase 2 and Inflammatory Cytokines Inhibition: An in-vitro, in-vivo, and in-silico Approach. Frontiers in Immunology, 2019, 10, 581.	4.8	53
11	Phytochemical analysis, molecular docking and antiamnesic effects of methanolic extract of Silybum marianum (L.) Gaertn seeds in scopolamine induced memory impairment in mice. Journal of Ethnopharmacology, 2018, 210, 198-208.	4.1	31
12	Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complementary and Alternative Medicine, 2018, 18, 332.	3.7	50
13	Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism. Fìtoterapìâ, 2018, 128, 148-161.	2.2	18
14	Natural Products as an Emerging Therapeutic Alternative in the Treatment of Neurological Disorders. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-2.	1.2	6
15	Isolation and Characterization of Two New Secondary Metabolites From Quercus incana and Their Antidepressant- and Anxiolytic-Like Potential. Frontiers in Pharmacology, 2018, 9, 298.	3.5	6
16	Characterization of 6-methoxyflavanone as a novel anxiolytic agent: A behavioral and pharmacokinetic approach. European Journal of Pharmacology, 2017, 801, 19-27.	3.5	18
17	Antidepressant, anticonvulsant and antinociceptive effects of 3′-methoxy-6-methylflavone and 3′-hydroxy-6-methylflavone may involve GABAergic mechanisms. Pharmacological Reports, 2017, 69, 1014-1020.	3.3	11
18	Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomedicine and Pharmacotherapy, 2017, 96, 700-709.	5.6	24

#	ARTICLE	IF	CITATION
19	Antidiabetic activity and histopathological analysis of carnosol isolated from Artemisia indica linn in streptozotocin-induced diabetic rats. Medicinal Chemistry Research, 2017, 26, 335-343.	2.4	5
20	Anti-inflammatory activity and molecular docking studies of quinolyl-thienyl chalcone. Bangladesh Journal of Pharmacology, 2016, 11, 703.	0.4	1
21	GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from <i>Artemisia indica </i> Linn. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-12.	1.2	32
22	6-Methoxyflavanone attenuates mechanical allodynia and vulvodynia in the streptozotocin-induced diabetic neuropathic pain. Biomedicine and Pharmacotherapy, 2016, 84, 962-971.	5.6	38
23	GABAA receptor modulation and neuropharmacological activities of viscosine isolated from Dodonaea viscosa (Linn). Pharmacology Biochemistry and Behavior, 2015, 136, 64-72.	2.9	30
24	Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 2014, 151, 618-623.	4.1	49
25	Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review. Amino Acids, 2013, 44, 1139-1149.	2.7	58
26	2′â€Methoxyâ€6â€methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA _A receptors. British Journal of Pharmacology, 2012, 165, 880-896.	5.4	44
27	Low nanomolar GABA effects at extrasynaptic \hat{i} ± $4\hat{i}$ 2 $1\hat{i}$ 2 $3\hat{i}$ GABAA receptor subtypes indicate a different binding mode for GABA at these receptors. Biochemical Pharmacology, 2012, 84, 549-557.	4.4	37
28	3-Hydroxy-2′-methoxy-6-methylflavone: A potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochemical Pharmacology, 2011, 82, 1971-1983.	4.4	37