Minggao Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915631/publications.pdf

Version: 2024-02-01

220 papers

20,972 citations

62 h-index 141 g-index

221 all docs

221 docs citations

times ranked

221

12752 citing authors

#	Article	IF	Citations
1	A Constant Current Control Method With Improved Dynamic Performance for <i>CLLC</i> Converters. IEEE Transactions on Power Electronics, 2022, 37, 1509-1523.	5.4	10
2	Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging. Energy, 2022, 239, 122097.	4.5	30
3	Thermal runaway front in failure propagation of long-shape lithium-ion battery. International Journal of Heat and Mass Transfer, 2022, 182, 121928.	2.5	31
4	Estimation of <scp>NCM111</scp> /graphite acoustic properties under different lithium stoichiometry based on nondestructive acoustic in situ testing. International Journal of Energy Research, 2022, 46, 2633-2654.	2.2	4
5	Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics. Applied Energy, 2022, 306, 117943.	5.1	38
6	Investigation for the effect of side plates on thermal runaway propagation characteristics in battery modules. Applied Thermal Engineering, 2022, 201, 117774.	3.0	23
7	Multi-objective optimization of side plates in a large format battery module to mitigate thermal runaway propagation. International Journal of Heat and Mass Transfer, 2022, 186, 122395.	2.5	19
8	In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery. Journal of Energy Chemistry, 2022, 69, 593-600.	7.1	34
9	Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge. Journal of Energy Storage, 2022, 49, 104090.	3.9	19
10	Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ //Graphite Pouch Cells. ACS Applied Materials & Diterfaces, 2022, 14, 10467-10477.	4.0	14
11	Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Applied Energy, 2022, 312, 118760.	5.1	40
12	A Toolbox of Reference Electrodes for Lithium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	27
13	A comprehensive overpotential analysis of highâ€power density fuel cell: channel/rid width design. International Journal of Energy Research, 2022, 46, 10998-11010.	2.2	4
14	An ultra-fast charging strategy for lithium-ion battery at low temperature without lithium plating. Journal of Energy Chemistry, 2022, 72, 442-452.	7.1	31
15	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	19.8	55
16	Experimental and theoretical analysis of the eruption processes of abused prismatic Ni-rich automotive batteries based on multi-parameters. Journal of Energy Storage, 2022, 52, 105012.	3.9	3
17	Multilevel Energy Management of a DC Microgrid Based on Virtual-Battery Model Considering Voltage Regulation and Economic Optimization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2881-2895.	3.7	11
18	Thermal abusive experimental research on the large-format lithium-ion battery using a buried dual-sensor. Journal of Energy Storage, 2021, 33, 102156.	3.9	17

#	Article	IF	CITATIONS
19	Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Materials, 2021, 34, 563-573.	9.5	264
20	Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming. Energy, 2021, 215, 118851.	4.5	52
21	Lithiumâ€platingâ€free fast charging of largeâ€format lithiumâ€ion batteries with reference electrodes. International Journal of Energy Research, 2021, 45, 7918-7932.	2.2	17
22	Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures. IScience, 2021, 24, 101921.	1.9	26
23	Parameter identification of fractionalâ€order model with transfer learning for aging lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 12825-12837.	2.2	14
24	A Coupled Optimization-oriented Reduced-order Aging Model for Graphite-LiFePO $<$ sub $>$ 4 $<$ /sub $>$ Li-ion Batteries under Dynamic Micorgrid Conditions. , 2021, , .		3
25	Kinetic Monte Carlo Simulation of Lithium Dendrite Growth in Lithium-ion Battery. , 2021, , .		1
26	Adoptive Control of Injector for Polymer Electrolyte Membrane Fuel Cell Hydrogen Feeding System., 2021,,.		0
27	Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway. IScience, 2021, 24, 102401.	1.9	26
28	The Cruising Range Analysis of Heavy-duty Fuel Cell Vehicles with Liquid Hydrogen Storage and Supply Systems Based on Dynamic Programming., 2021,,.		2
29	A Novel Data Augmentation and Swift Optimal Sizing Framework for PV-based EV Charging Microgrid. , 2021, , .		3
30	A comparative study of equivalent circuit model and distribution of relaxation times for fuel cell impedance diagnosis. International Journal of Energy Research, 2021, 45, 15948-15961.	2.2	22
31	A Vehicle-to-Grid Frequency Regulation Framework for Fast Charging Infrastructures Considering Power Performances of Lithium-ion Batteries and Chargers. , 2021, , .		3
32	Simulation analysis of fuel economy of a fuel cell/battery passive hybrid power system for commercial vehicles., 2021,,.		1
33	A Semi-Decentralized Control Strategy of a PV-based Microgrid with Battery Energy Storage Systems for Electric Vehicle Charging and Hydrogen Production. , 2021, , .		1
34	A review of the internal short circuit mechanism in lithiumâ€ion batteries: Inducement, detection and prevention. International Journal of Energy Research, 2021, 45, 15797-15831.	2.2	60
35	A reducedâ€dimension dynamic model of a protonâ€exchange membrane fuel cell. International Journal of Energy Research, 2021, 45, 18002-18017.	2.2	9
36	In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 2021, 12, 4235.	5.8	74

#	Article	IF	CITATIONS
37	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85, 105878.	8.2	116
38	Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 2021, 39, 395-402.	9.5	74
39	Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model. Applied Energy, 2021, 295, 117038.	5.1	48
40	Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method. Journal of Power Sources, 2021, 504, 230065.	4.0	82
41	Comprehensive early warning strategies based on consistency deviation of thermal–electrical characteristics for energy storage grid. IScience, 2021, 24, 103058.	1.9	3
42	A decomposed electrode model for real-time anode potential observation of lithium-ion batteries. Journal of Power Sources, 2021, 513, 230529.	4.0	17
43	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
44	Equivalence of time and frequency domain modeling for lithium ion batteries. , 2021, , .		2
45	An Experimental Study on Thermal Runaway Behavior for High-Capacity Li(Ni0.8Co0.1Mn0.1)O2 Pouch Cells at Different State of Charges. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	5
46	A Design of Air System Control Algorithm for Full Power Fuel Cell Vehicles. , 2021, , .		0
47	Electrical Interoperability Evaluating of Wireless Electric Vehicle Charging Systems Based on Impedance Space. World Electric Vehicle Journal, 2021, 12, 245.	1.6	2
48	Optimal Charging of Lithium-ion Batteries Based on Model Predictive Control Considering Lithium Plating and Cell Temperature. , 2021, , .		2
49	External Liquid Cooling Method for Lithium-ion Battery Modules under Ultra-fast Charging. , 2021, , .		1
50	Feedforward and Feedback Integrated Control for Handling Characteristics Adjustment of Multi-axle Heavy-duty Vehicles Using Independent-drive Electric Wheels., 2021,,.		1
51	Design and Performance Analysis of Multi-axle Independent-drive Heavy-duty Fuel Cell Vehicles. , 2021, , .		1
52	A novel state-of-charge-based method for plug-in hybrid vehicle electric distance analysis validated with actual driving data. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 459-475.	1.0	5
53	Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Applied Energy, 2020, 259, 114143.	5.1	61
54	Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11, 5100.	5.8	133

#	Article	IF	CITATIONS
55	Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. Journal of Energy Storage, 2020, 31, 101670.	3.9	45
56	Soil pollution element content and size distribution of particles released by abused prismatic Ni-rich automotive lithium-ion batteries. , 2020, , .		1
57	A Novel Method to Actively Damp the Vibration of the Hybrid Powertrain by Utilizing a Flywheel Integrated-Starter-Generator. IEEE Access, 2020, 8, 147045-147058.	2.6	5
58	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.	6.6	122
59	An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together. Fire Technology, 2020, 56, 2579-2602.	1.5	58
60	Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 2020, 4, 743-770.	11.7	676
61	Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra. Energies, 2020, 13, 915.	1.6	22
62	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.	8.2	72
63	Massive battery pack data compression and reconstruction using a frequency division model in battery management systems. Journal of Energy Storage, 2020, 28, 101252.	3.9	42
64	Plug-in electric vehicles in China and the USA: a technology and market comparison. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 329-353.	1.0	21
65	Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. Journal of Cleaner Production, 2020, 255, 120277.	4.6	60
66	Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery. Journal of Energy Storage, 2020, 30, 101404.	3.9	44
67	Torque Distribution Strategy for Multi-PMSM Applications and Optimal Acceleration Control for Four-Wheel-Drive Electric Vehicles. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2020, 142, .	0.9	9
68	Decoupling Control Strategy for Cathode System of Proton Exchange Membrane Fuel Cell Engine. , 2020, , .		0
69	Analysis of fuel cell impedance characteristics at high current density based on distribution of relaxation times. , 2020, , .		1
70	A comparative study on capillary pressure correlations of water transport in PEMFC gas diffusion layer. , 2020, , .		0
71	Optimization of channel dimensions and gas diffusion layer thickness based on mass transfer characteristics of proton exchange membrane fuel cell. , 2020, , .		0
72	Optimal sizing of fuel cell electric vehicle powertrain considering multiple objectives. , 2020, , .		7

#	Article	IF	Citations
73	A Novel Framework for Optimal Sizing of A DC Microgrid Considering Energy Management and Battery Degradation. , 2020, , .		1
74	Optimization of gas feeding operations for polymer electrolyte membrane fuel cell with the co-flow feeding gas mode. , 2020, , .		0
75	Experimental study on metallic bipolar plates fuel cell system with high power density. , 2020, , .		0
76	Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model. IEEE Transactions on Industrial Electronics, 2019, 66, 2132-2142.	5.2	167
77	A semiempirical dynamic model of reversible open circuit voltage drop in a PEM fuel cell. International Journal of Energy Research, 2019, 43, 2550-2561.	2.2	9
78	Lithium-ion battery fast charging: A review. ETransportation, 2019, 1, 100011.	6.8	835
79	Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. IEEE Transactions on Vehicular Technology, 2019, 68, 8583-8592.	3.9	265
80	Efficiency Improvement of Wireless Charging System Based on Active Power Source in Receiver. IEEE Access, 2019, 7, 98136-98143.	2.6	8
81	Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US. Energies, 2019, 12, 3753.	1.6	13
82	Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries. Journal of Energy Storage, 2019, 26, 100991.	3.9	38
83	An Economy Evaluation Method for Fuel Cell Hybrid Powertrain System. , 2019, , .		1
84	Energy Management of a Dual-Engine System for Hybrid Heavy-Duty Vehicles. , 2019, , .		1
85	Key Characteristics for Thermal Runaway of Li-ion Batteries. Energy Procedia, 2019, 158, 4684-4689.	1.8	59
86	Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles. Applied Energy, 2019, 255, 113793.	5.1	49
87	Experimental Investigation on the Feasibility of Heat Pipe-Based Thermal Management System to Prevent Thermal Runaway Propagation. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	1.1	17
88	Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse. Journal of Energy Storage, 2019, 24, 100775.	3.9	66
89	An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties. Journal of Energy Storage, 2019, 24, 100745.	3.9	30
90	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.	19.8	345

#	Article	IF	CITATIONS
91	Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms. Energy, 2019, 177, 386-396.	4.5	116
92	Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Applied Energy, 2019, 246, 53-64.	5.1	358
93	Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory. Energy Conversion and Management, 2019, 185, 211-222.	4.4	27
94	Hardware-in-the-loop Simulation of Electronic Differential Moment Power Steering Control Strategy for Multi-axle Vehicle. , 2019, , .		1
95	Study on Sensitivity of Internal States to Operating Conditions within PEM Fuel Cell. , 2019, , .		0
96	A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. ETransportation, 2019, 2, 100034.	6.8	230
97	Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 46839-46850.	4.0	144
98	A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-ion Batteries in Electric Vehicle. Automotive Innovation, 2019, 2, 263-275.	3.1	47
99	A graphical model for evaluating the status of series-connected lithium-ion battery pack. International Journal of Energy Research, 2019, 43, 749-766.	2.2	20
100	Self-Humidification of a Polymer Electrolyte Membrane Fuel Cell System With Cathodic Exhaust Gas Recirculation. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	6
101	Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. Journal of Power Sources, 2018, 377, 161-188.	4.0	330
102	Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data. Journal of Power Sources, 2018, 377, 59-69.	4.0	44
103	Component sizing optimization of plug-in hybrid electric vehicles with the hybrid energy storage system. Energy, 2018, 144, 393-403.	4.5	103
104	Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. Journal of Energy Storage, 2018, 18, 26-39.	3.9	166
105	State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. Journal of Power Sources, 2018, 383, 50-58.	4.0	192
106	Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018, 10, 246-267.	9.5	1,939
107	Hybrid Lithium Iron Phosphate Battery and Lithium Titanate Battery Systems for Electric Buses. IEEE Transactions on Vehicular Technology, 2018, 67, 956-965.	3.9	42
108	The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 92-103.	3.9	369

#	Article	IF	Citations
109	Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode. Frontiers in Energy Research, 2018, 6, .	1.2	89
110	A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-lon Batteries. Journal of the Electrochemical Society, 2018, 165, A3748-A3765.	1.3	98
111	Parameter Identification Method for Fractional-order Model of Lithium-ion Battery. , 2018, , .		2
112	Internal short circuit detection method for battery pack based on circuit topology. Science China Technological Sciences, 2018, 61, 1502-1511.	2.0	28
113	Incremental Capacity Analysis on Commercial Lithium-Ion Batteries Using Support Vector Regression: A Parametric Study. Energies, 2018, 11, 2323.	1.6	33
114	Progress review of US-China joint research on advanced technologies for plug-in electric vehicles. Science China Technological Sciences, 2018, 61, 1431-1445.	2.0	16
115	Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Applied Energy, 2018, 228, 633-644.	5.1	241
116	Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2018, 2, 2047-2064.	11.7	442
117	Error Analysis of the Model-Based State-of-Charge Observer for Lithium-Ion Batteries. IEEE Transactions on Vehicular Technology, 2018, 67, 8055-8064.	3.9	36
118	Interactions between a polymer electrolyte membrane fuel cell and boost converter utilizing a multiscale model. Journal of Power Sources, 2018, 395, 237-250.	4.0	16
119	Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals. Energy, 2017, 122, 675-690.	4.5	21
120	Robust control of internal states in a polymer electrolyte membrane fuel cell air-feed system by considering actuator properties. International Journal of Hydrogen Energy, 2017, 42, 13171-13191.	3.8	27
121	Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm. Journal of Power Sources, 2017, 356, 56-71.	4.0	21
122	The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses. Energy, 2017, 135, 91-100.	4.5	65
123	Energy management and design optimization for a series-parallel PHEV city bus. International Journal of Automotive Technology, 2017, 18, 473-487.	0.7	16
124	Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation. International Journal of Hydrogen Energy, 2017, 42, 2309-2326.	3.8	29
125	Internal Short Circuit Trigger Method for Lithium-lon Battery Based on Shape Memory Alloy. Journal of the Electrochemical Society, 2017, 164, A3038-A3044.	1.3	64
126	An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. Journal of Power Sources, 2017, 364, 328-340.	4.0	294

#	Article	IF	Citations
127	Methodology of designing durability test protocol for vehicular fuel cell system operated in soft run mode based on statistic results of on-road data. International Journal of Hydrogen Energy, 2017, 42, 29840-29851.	3.8	19
128	Optimal torque distribution strategy considering energy loss and tire adhesion for 4WD electric vehicles. , 2017, , .		6
129	Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications. Energies, 2016, 9, 603.	1.6	64
130	Development of a PEM Fuel Cell City Bus with a Hierarchical Control System. Energies, 2016, 9, 417.	1.6	24
131	State of Charge, State of Health and State of Function Co-Estimation of Lithium-Ion Batteries for Electric Vehicles. , 2016, , .		9
132	Online Weld Breakage Diagnosis for the Battery of Electric Vehicle: A Data-Driven Approach., 2016,,.		1
133	Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energy Conversion and Management, 2016, 129, 108-121.	4.4	214
134	Design of a multi-channel gas sampling system for fuel cell with dead-ended anode configuration. , 2016, , .		0
135	Comparison study on life-cycle costs of different trams powered by fuel cell systems and others. International Journal of Hydrogen Energy, 2016, 41, 16577-16591.	3.8	28
136	Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus. International Journal of Hydrogen Energy, 2016, 41, 15295-15310.	3.8	64
137	A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy, 2016, 115, 194-208.	4.5	279
138	Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports, 2016, 6, 30248.	1.6	153
139	Determination of the battery pack capacity considering the estimation error using a Capacity–Quantity diagram. Applied Energy, 2016, 177, 384-392.	5.1	21
140	Online internal short circuit detection for a large format lithium ion battery. Applied Energy, 2016, 161, 168-180.	5.1	251
141	Energy flow modeling and real-time control design basing on mean values for maximizing driving mileage of a fuel cell bus. International Journal of Hydrogen Energy, 2015, 40, 15052-15066.	3.8	37
142	Optimized Torque Distribution Strategy for In-Wheel-Drive Electric Vehicles to Reduce Tire Wear. , 2015, , .		1
143	Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	0.9	15
144	Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni1/3Co1/3Mn1/3O2+ Li Mn2O4 composite cathode. Journal of Power Sources, 2015, 279, 626-635.	4.0	197

#	Article	IF	Citations
145	Online estimation of lithium-ion battery remaining discharge capacity through differential voltage analysis. Journal of Power Sources, 2015, 274, 971-989.	4.0	63
146	Beijing passenger car travel survey: implications for alternative fuel vehicle deployment. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 817-835.	1.0	47
147	Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing. Applied Energy, 2015, 157, 710-719.	5.1	153
148	A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications. Applied Energy, 2015, 149, 297-314.	5.1	87
149	Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNi Co Mn O2 large format lithium ion battery. Applied Energy, 2015, 154, 74-91.	5.1	293
150	Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles. Applied Energy, 2015, 157, 664-674.	5.1	159
151	Energy and environmental life-cycle assessment of passenger car electrification based on Beijing driving patterns. Science China Technological Sciences, 2015, 58, 659-668.	2.0	12
152	The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis. Applied Energy, 2015, 159, 576-588.	5.1	95
153	Internal short circuit detection for battery pack using equivalent parameter and consistency method. Journal of Power Sources, 2015, 294, 272-283.	4.0	191
154	Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. Journal of Power Sources, 2015, 275, 261-273.	4.0	372
155	A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles. Journal of Power Sources, 2015, 274, 400-411.	4.0	170
156	Energy management of plug-in hybrid electric vehicles with unknown trip length. Journal of the Franklin Institute, 2015, 352, 500-518.	1.9	37
157	Levelized costs of conventional and battery electric vehicles in china: Beijing experiences. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1229-1246.	1.0	29
158	Optimal Velocity Control for a Battery Electric Vehicle Driven by Permanent Magnet Synchronous Motors. Mathematical Problems in Engineering, 2014, 2014, 1-14.	0.6	14
159	A comparative study of equivalent circuit models and enhanced equivalent circuit models of lithium-ion batteries with different model structures. , 2014, , .		9
160	Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis. Energies, 2014, 7, 5374-5399.	1.6	25
161	Research on the control of the generating system in the walking machines. , 2014, , .		0
162	Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1001-1010.	2.0	180

#	Article	IF	Citations
163	Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. International Journal of Hydrogen Energy, 2014, 39, 2374-2389.	3.8	95
164	Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles. Applied Energy, 2014, 115, 174-189.	5.1	241
165	A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 2014, 251, 38-54.	4.0	554
166	Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles. Applied Energy, 2014, 135, 212-224.	5.1	275
167	Energy management strategies comparison for electric vehicles with hybrid energy storage system. Applied Energy, 2014, 134, 321-331.	5.1	305
168	Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination. Journal of Power Sources, 2014, 270, 221-237.	4.0	95
169	Characterization of large format lithium ion battery exposed to extremely high temperature. Journal of Power Sources, 2014, 272, 457-467.	4.0	142
170	Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of Power Sources, 2014, 255, 294-301.	4.0	591
171	Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles. International Journal of Hydrogen Energy, 2013, 38, 10104-10115.	3.8	150
172	Thermal Modeling of a LiFePO ₄ /Graphite Battery and Research on the Influence of Battery Temperature Rise on EV Driving Range Estimation., 2013,,.		1
173	A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226, 272-288.	4.0	3,691
174	LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. Journal of Power Sources, 2013, 226, 33-41.	4.0	155
175	Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Applied Energy, 2013, 111, 571-580.	5.1	158
176	Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Applied Energy, 2013, 103, 477-487.	5.1	111
177	An assessment of PHEV energy management strategies using driving range data collected in Beijing. , 2013, , .		1
178	Analysis of two typical EV business models based on EV taxi demonstrations in China. , 2013, , .		1
179	Real-Time Estimation of Vehicle Mass and Road Grade Based on Multi-Sensor Data Fusion. , 2013, , .		15
180	Research on simplification of simulating the heat conduction in the lithium-ion battery core. , 2013, , .		4

#	Article	IF	Citations
181	A GPS-based research on driving range and patterns of private passenger vehicle in Beijing., 2013,,.		9
182	Traction Control System for EV Based on Modified Maximum Transmissible Torque Estimation. , 2013, , .		2
183	Closed Loop Control Algorithm of Fuel Cell Output Power for a City Bus. SAE International Journal of Alternative Powertrains, 2013, 2, 74-81.	0.8	5
184	Research on Simplification of Simulating the Heat Conduction in the Lithium-ion Battery Core. World Electric Vehicle Journal, 2013, 6, 611-622.	1.6	0
185	Transient control of low-temperature premixed combustion using ISG motor dynamic torque compensation., 2012,,.		1
186	Dynamic Programming Algorithm for minimizing operating cost of a PEM fuel cell vehicle. , 2012, , .		26
187	Optimal Speed Pattern Generating Method for acceleration process of EVs. , 2012, , .		0
188	Economic operating characteristics of permanent magnet synchronous motor in electric vehicle. , 2012, , .		1
189	Battery electric vehicle parameters design targeting to cost-benefit objective. , 2012, , .		1
190	Real time optimal energy management strategy targeting at minimizing daily operation cost for a plug-in fuel cell city bus. International Journal of Hydrogen Energy, 2012, 37, 15380-15392.	3.8	82
191	A distributed control system for an automatic mechanical transmission of a fuel cell city bus. , 2012, , .		0
192	Torque Observers Design for Spark Ignition Engines With Different Intake Air Measurement Sensors. IEEE Transactions on Control Systems Technology, 2011, 19, 229-237.	3.2	28
193	Research on hub motor control of four-wheel drive electric vehicle., 2011,,.		16
194	Dynamic control for low cost auxiliary power unit of electric bus. , 2011, , .		0
195	Vehicle survival patterns in China. Science China Technological Sciences, 2011, 54, 625-629.	2.0	99
196	Integration of PEM fuel cell/battery powertrain: EMI noises and power split strategy. , 2011, , .		2
197	Hardware-in-loop simulation of a common rail turbocharged diesel engine ECU. , 2011, , .		0
198	General status & Denember 1 General status & Denember 2 Ge		1

#	Article	IF	CITATIONS
199	Active fault tolerance control system of fuel cell hybrid city bus. International Journal of Hydrogen Energy, 2010, 35, 12510-12520.	3.8	38
200	Model-based PI feedback control of engine torque., 2010,,.		0
201	Experimental Study and Characterization of Diesel PM Pollution of Urban Bus. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
202	Control strategy of wind power output by pitch angle control using fuzzy logic., 2010,,.		4
203	Fuzzy logic based coordinated controller for wind/battery/IDSMS hybrid micro-grid power system. , 2010, , .		3
204	Modeling and control of air system for PEMFC system. , 2009, , .		1
205	MEMS and J2ME based acceleration real-time measurement and monitoring system for fuel cell city bus. , 2009, , .		1
206	Modeling and experimental study of PEM fuel cell transient response for automotive applications. Tsinghua Science and Technology, 2009, 14, 639-645.	4.1	11
207	Optimal vehicle control strategy of a fuel cell/battery hybrid city bus. International Journal of Hydrogen Energy, 2009, 34, 7323-7333.	3.8	114
208	Adaptive supervisory control strategy of a fuel cell/battery-powered city bus. Journal of Power Sources, 2009, 194, 360-368.	4.0	119
209	An Experimental Study and Nonlinear Modeling of Discharge <i>1–V < /i> Behavior of Valve-Regulated Lead–Acid Batteries. IEEE Transactions on Energy Conversion, 2009, 24, 452-458.</i>	3.7	49
210	Feedback control of fuel injection based on online valve closure point detection., 2009,,.		0
211	High-performance control of PMSM based on a new forecast algorithm with only low-resolution position sensor. , 2009, , .		1
212	Optimization of DC Power Flow by Transmission Loss Allocation Method. , 2009, , .		0
213	Power management and economic estimation of fuel cell hybrid vehicle using fuzzy logic., 2009,,.		9
214	Input Observer-Based Individual Cylinder Air-Fuel Ratio Control: Modelling, Design and Validation. IEEE Transactions on Control Systems Technology, 2008, 16, 1057-1065.	3.2	33
215	Control algorithm of fuel cell/battery hybrid vehicular power system. , 2008, , .		4
216	Analysis of water management in proton exchange membrane membrane fuel cells. Tsinghua Science and Technology, $2006,11,54-64.$	4.1	31

#	Article	IF	CITATIONS
217	Dynamic Test and Real-time Control Platform of Anode Recirculation for PEM Fuel Cell Systems. Journal of Fuel Cell Science and Technology, 2006, 3, 333-345.	0.8	11
218	Novel Load Following Control of an Auxiliary Power Unit., 2006,,.		2
219	A Control Strategy for Fuel Cell Hybrid City Bus. Journal of Asian Electric Vehicles, 2004, 2, 521-525.	0.4	1
220	A Hybrid Energy Storage System for a Coaxial Power-Split Hybrid Powertrain. , 0, , .		2