
Yasuro Niidome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915512/publications.pdf Version: 2024-02-01

YASURO NUDOME

#	Article	IF	CITATIONS
1	Mass signal intensity of Ag2+ ions desorbed from a single gold–silver core-shell nanorod. International Journal of Mass Spectrometry, 2022, 473, 116795.	1.5	1
2	Gold Nanorod Mass-Probe to Trace the Biodistribution of Nanomaterials. Bunseki Kagaku, 2022, 71, 153-157.	0.2	0
3	Anionic Gold Ions Desorbed from Gold Nanorods and Nanospheres. Analytical Sciences, 2021, , .	1.6	1
4	Novel Photoluminescent Gold Complexes Prepared at Octanethiol–Water Interfaces: Control of Optical Properties by Addition of Silver Ions. Bulletin of the Chemical Society of Japan, 2021, 94, 1875-1881.	3.2	5
5	Gold–Silver and Gold–Palladium Alloy Nanoparticles as Mass-Probes for Immunosensing. Analytical Sciences, 2021, 37, 1305-1307.	1.6	4
6	Reproducible Ionization of Gold Nanospheres and Nanostars in Gelatin Sections. Bulletin of the Chemical Society of Japan, 2020, 93, 58-64.	3.2	5
7	Gold-Treated Silver Nanoparticles Have Enhanced Antimicrobial Activity. Bulletin of the Chemical Society of Japan, 2019, 92, 297-301.	3.2	14
8	Plasmon-enhanced two-photon excitation fluorescence of rhodamine 6G and an Eu-diketonate complex by a picosecond diode laser. Analyst, The, 2019, 144, 4045-4050.	3.5	4
9	Gold Nanorod-tags in Mucous Membrane of a Zebrafish. Chemistry Letters, 2019, 48, 1488-1491.	1.3	2
10	Imaging mass spectrometry of gold nanoparticles in a tissue section as an immunohistochemical staining mass probe. Journal of Mass Spectrometry, 2019, 54, 1-6.	1.6	9
11	Gold Nanoparticles as Mass-probe for Dot Blotting. Chemistry Letters, 2018, 47, 993-995.	1.3	9
12	Ultra-high sensitivity detection of gold nanorods on a blotting membrane by laser induced desorption/ionization of gold ions. Analytical Methods, 2017, 9, 1177-1184.	2.7	10
13	Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates. International Nano Letters, 2017, 7, 181-186.	5.0	4
14	Colloidal Dispersion of Gold Nanorods and Gold-Silver Core-Shell Nanorods in Polar Organic Solvents. Bulletin of the Chemical Society of Japan, 2017, 90, 161-168.	3.2	3
15	Fractionation of Gold Nanorod Dimers by Stepwise Density Gradient Centrifugation. Chemistry Letters, 2017, 46, 1785-1788.	1.3	1
16	Assemblies of gold nanorods for efficient SALDI mass spectrometry. Optical Materials Express, 2016, 6, 1376.	3.0	7
17	Stepwise Preparation of Spherical Gold Nanoparticles Passivated with Cationic Amphiphiles. Analytical Sciences, 2016, 32, 875-880.	1.6	8
18	Anisotropic Gold-based Nanoparticles: Preparation, Properties, and Applications. Chemistry Letters, 2016, 45, 488-498.	1.3	33

#	Article	IF	CITATIONS
19	Escape Depth of Gold Ions in Tissue Sections. Materials Research Society Symposia Proceedings, 2015, 1719, 21.	0.1	2
20	Imaging Mass Spectrometry of Gold Nanorods Distributed in Tumor Tissues. Chemistry Letters, 2015, 44, 931-933.	1.3	12
21	<i>In situ</i> observation of structural transformation of gold nanorods under pulsed laser irradiation in an HVEM. Microscopy (Oxford, England), 2014, 63, 261-268.	1.5	12
22	Microenvironment effect on the electronic potentials of individual (6,5)single-walled carbon nanotubes. Journal of Materials Chemistry C, 2014, 2, 5223.	5.5	11
23	Spectroscopic Properties and SEM Observations of Au-Ag Core-shell Nanorods Deposited on ITO Plates. Bunseki Kagaku, 2014, 63, 857-865.	0.2	Ο
24	Imaging Mass Spectrometry of Intravenously Injected Gold Nanorods in Mice. Chemistry Letters, 2014, 43, 131-133.	1.3	14
25	PEG-silica-modified gold nanorods that retain their optical properties in tumor tissues. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 2071-2080.	3.5	5
26	CW/pulsed NIR irradiation of gold nanorods: Effect on transdermal protein delivery mediated by photothermal ablation. Journal of Controlled Release, 2013, 171, 178-183.	9.9	43
27	Formation of Au@Pd@Cu core–shell nanorods from Au@Pd nanorods through a new stepwise growth mode. CrystEngComm, 2013, 15, 6553.	2.6	15
28	Effects of Anions on Electrochemical Reactions of Silver Shells on Gold Nanorods. Journal of Physical Chemistry C, 2013, 117, 2521-2530.	3.1	12
29	Observation of Defocus Images of a Single Metal Nanorod. Journal of Physical Chemistry C, 2013, 117, 2535-2540.	3.1	17
30	Electrochemical Oxidation of Silver Shells on Gold Nanorods in Potassium Chloride and Phosphate Buffer Solutions. Chemistry Letters, 2013, 42, 1093-1095.	1.3	4
31	Spontaneous Temperature Control Using Reversible Spectroscopic Responses of PNIPAM-coated Gold Nanorods. Chemistry Letters, 2013, 42, 1247-1249.	1.3	3
32	Exchange of Oligonucleotide (dC15) on Single-walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2012, 1407, 51.	0.1	1
33	Sensing of Oligopeptides Using Alternatively-Deposited Gold Nanorods for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Materials Research Society Symposia Proceedings, 2012, 1418, 145.	0.1	Ο
34	Effect of Charge of a Matrix Polymer on the Electronic States of Single-Walled Carbon Nanotubes. Bulletin of the Chemical Society of Japan, 2012, 85, 1262-1267.	3.2	12
35	Electrochemical Deposition of Silver on Gold Electrodes in the Presence of Halogen Ions. Chemistry Letters, 2012, 41, 962-964.	1.3	4
36	Spectroscopic Determination of the Electrochemical Potentials of n-Type Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 5444-5449.	3.1	17

#	Article	IF	CITATIONS
37	Multimode Resonances in Silver Nanocuboids. Langmuir, 2012, 28, 9103-9112.	3.5	55
38	Optical properties of Auâ \in "Ag coreâ \in "shell nanorods on glass and ITO substrates. Optics Communications, 2012, 285, 3419-3422.	2.1	6
39	Chirality-Dependent Changes in the Density of Single-Walled Carbon Nanotubes Oxidized by Tetrachloroaurate. Molecular Crystals and Liquid Crystals, 2011, 539, 184/[524]-189/[529].	0.9	1
40	Sensing of oligopeptides using localized surface plasmon resonances combined with Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Nanoscale, 2011, 3, 3793.	5.6	16
41	Controlled-Release System Mediated by a Retro Diels–Alder Reaction Induced by the Photothermal Effect of Gold Nanorods. Langmuir, 2011, 27, 14621-14626.	3.5	63
42	Ultrafast spectroscopy and coherent acoustic phonons of Au–Ag core–shell nanorods. Journal of Chemical Physics, 2011, 134, 054501.	3.0	26
43	Supramolecular Hybrid of Gold Nanoparticles and Semiconducting Single-Walled Carbon Nanotubes Wrapped by a Porphyrin–Fluorene Copolymer. Journal of the American Chemical Society, 2011, 133, 14771-14777.	13.7	46
44	Rational Concept To Recognize/Extract Single-Walled Carbon Nanotubes with a Specific Chirality. Journal of the American Chemical Society, 2011, 133, 2651-2657.	13.7	122
45	One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer. Chemistry Letters, 2011, 40, 239-241.	1.3	127
46	Redispersion of dried gold nanorods in the presence of 6-amino-1-hexanethiol hydrochloride. Journal of Nanoparticle Research, 2011, 13, 3413-3421.	1.9	2
47	Convenient approaches for the synthesis of gold nanowires by successive utilization of two kinds of reducing agents in the solution of hexadecyl-trimethylammonium bromide. Journal of Nanoparticle Research, 2011, 13, 6297-6303.	1.9	2
48	Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorganic and Medicinal Chemistry, 2011, 19, 2130-2135.	3.0	73
49	Spectral dependence of gold nanorods on the optical properties of substrates and adsorption of polypeptides. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 204-208.	3.9	6
50	Label-free Biosensor Using Polyion-modified Gold Nanorods Adsorbed on a Glass Substrate. Chemistry Letters, 2010, 39, 992-993.	1.3	5
51	Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale, 2010, 2, 1489.	5.6	169
52	Strong Micro-Dielectric Environment Effect on the Band Gaps of (<i>n</i> , <i>m</i>)Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13072-13077.	13.7	50
53	Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. Nanoscale, 2010, 2, 1767.	5.6	34
54	Active Accumulation of Gold Nanorods in Tumor in Response to Near-Infrared Laser Irradiation. Bioconjugate Chemistry, 2010, 21, 2049-2054.	3.6	41

#	Article	IF	CITATIONS
55	Functional Controlled Release Systems Triggered by Photothermal Effect of Gold Nanorods. Materials Research Society Symposia Proceedings, 2009, 1241, 1.	0.1	0
56	Efficient Separation of (6,5)â€Singleâ€Walled Carbon Nanotubes Using a "Nanometal Sinker― Angewandt Chemie - International Edition, 2009, 48, 5435-5438.	e _{13.8}	21
57	Experimentally Determined Redox Potentials of Individual (<i>n</i> , <i>m</i>)â€Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7655-7659.	13.8	147
58	PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser. Bioconjugate Chemistry, 2009, 20, 209-212.	3.6	219
59	Poly(ethylene glycol)-Modified Gold Nanorods as a Photothermal Nanodevice for Hyperthermia. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1203-1215.	3.5	78
60	Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Chemical Communications, 2009, , 1754.	4.1	62
61	Rapid Formation of Silver Shells on Gold Nanorods in a Micellar Solution of Hexadecyltrimethylammonium Chloride. Chemistry Letters, 2009, 38, 60-61.	1.3	21
62	In Situ Photoluminescence Spectroelectrochemistry of Single-walled Carbon Nanotubes with Nine Different Chiral Indices. Chemistry Letters, 2009, 38, 864-865.	1.3	8
63	Photochemical Reaction of Poly(ethylene glycol) on Gold Nanorods Induced by Near Infrared Pulsed-laser Irradiation. Chemistry Letters, 2009, 38, 226-227.	1.3	24
64	Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. Journal of Nanoparticle Research, 2008, 10, 221-228.	1.9	49
65	In Vivo Monitoring of Intravenously Injected Gold Nanorods Using Nearâ€Infrared Light. Small, 2008, 4, 1001-1007.	10.0	48
66	Regulation of the Nearâ€IR Spectral Properties of Individually Dissolved Singleâ€Walled Carbon Nanotubes in Aqueous Solutions of dsDNA. Chemistry - A European Journal, 2008, 14, 5966-5973.	3.3	31
67	NIR Laserâ€Driven Reversible Volume Phase Transition of Singleâ€Walled Carbon Nanotube/Poly(Nâ€isopropylacrylamide) Composite Gels. Advanced Materials, 2008, 20, 3610-3614.	21.0	123
68	Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chemical Physics Letters, 2008, 455, 249-251.	2.6	55
69	Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces. Langmuir, 2008, 24, 12026-12031.	3.5	96
70	Relationship between degree of dynamic morphological change and proliferative potential of murine embryonic stem cells. Journal of Bioscience and Bioengineering, 2008, 105, 58-60.	2.2	4
71	Formation of Gold Nanorod–Myoglobin Aggregates by Electrostatic Interactions and Their Photochemical Properties. Japanese Journal of Applied Physics, 2008, 47, 1374-1376.	1.5	7
72	In vivo Monitoring of Gold Nanorods and Tissue Damage Mediated with Their Photothermal Effect. Materials Research Society Symposia Proceedings, 2008, 1138, 1.	0.1	0

#	Article	IF	CITATIONS
73	Photoinduced Release of Oligonucleotide-conjugated Silica-coated Gold Nanorods Accompanied by Moderate Morphological Changes. Chemistry Letters, 2008, 37, 718-719.	1.3	11
74	Expression of Plasmid DNA Released from DNA Conjugates of Gold Nanorods. Chemistry Letters, 2007, 36, 952-953.	1.3	26
75	Novel Effects of Twin-tailed Cationic Surfactants on the Formation of Gold Nanorods. Chemistry Letters, 2007, 36, 1230-1231.	1.3	10
76	Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes. Chemistry Letters, 2007, 36, 1140-1141.	1.3	46
77	Photochemical Reactions of Ketones to Synthesize Gold Nanorods. Langmuir, 2007, 23, 10353-10356.	3.5	56
78	Surface modification of gold nanorods with synthetic cationic lipids. Chemical Communications, 2007, , 3777.	4.1	39
79	Electrochemistry of an Open-Cage Fullerene Embedded in a Film of Hydrophobic Ammonium Ion on an Electrode. Journal of Physical Chemistry C, 2007, 111, 6500-6504.	3.1	6
80	Stable Incorporation of Gold Nanorods intoN-Isopropylacrylamide Hydrogels and Their Rapid Shrinkage Induced by Near-Infrared Laser Irradiation. Langmuir, 2007, 23, 4012-4018.	3.5	144
81	Extraction of Hexadecyltrimethylammonium Bromide from Gold Nanorod Solutions: Adsorption of Gold Nanorods on Anionic Glass Surfaces. Transactions of the Materials Research Society of Japan, 2007, 32, 421-424.	0.2	4
82	Pulsed-Laser Induced Fragmentation and Dissociation of DNA Immobilized on Gold Nanoparticles. Molecular Crystals and Liquid Crystals, 2006, 445, 201/[491]-206/[496].	0.9	13
83	Modification of Gold Nanorods Using Phosphatidylcholine to Reduce Cytotoxicity. Langmuir, 2006, 22, 2-5.	3.5	398
84	Control of Laser-Induced Deposition of Gold Nanoparticles on Glass Substrates for Localized Surface Plasmon Sensing. Bunseki Kagaku, 2006, 55, 675-679.	0.2	2
85	Gold Nanorod-sensitized Cell Death: Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chemistry Letters, 2006, 35, 500-501.	1.3	118
86	End-to-end Assemblies of Gold Nanorods Adsorbed on a Glass Substrate Modified with Polyanion Polymers. Chemistry Letters, 2006, 35, 854-855.	1.3	9
87	Heat-induced morphological control of gold nanoparticle films for surface-enhanced Raman scattering (SERS) measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 388-394.	4.7	9
88	Pulsed-laser induced flocculation of carbon nanotubes solubilized by an anthracene-carrying polymer. Chemical Physics Letters, 2006, 429, 488-491.	2.6	15
89	Adsorption characteristics of 4,4′-bipyridine molecules on gold nanosphere films studied by surface-enhanced Raman scattering. Thin Solid Films, 2006, 496, 740-747.	1.8	43
90	Deposition of indium oxide thin films assisted by gold nanoparticles in cyclohexane. Thin Solid Films, 2006, 513, 60-63.	1.8	12

#	Article	IF	CITATIONS
91	Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles. Thin Solid Films, 2006, 515, 1618-1622.	1.8	0
92	Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. Journal of Controlled Release, 2006, 111, 382-389.	9.9	123
93	PEC-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release, 2006, 114, 343-347.	9.9	1,098
94	Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology, 2006, 17, 4431-4435.	2.6	91
95	Preparation of Cationic Gold Nanoparticles in Aqueous Solutions of 2-Aminoethanethiol Hydrochloride. Bunseki Kagaku, 2005, 54, 521-526.	0.2	3
96	Effects of ammonium salts and anionic amphiphiles on the photochemical formation of gold nanorods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 161-164.	4.7	7
97	Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chemical Communications, 2005, , 2247.	4.1	156
98	Facile Fabrication of Morphology-Controlled Gold Nanoparticle Architectures by Electrolyte-Induced Agglomeration and Their Photoelectrochemical Applications. Langmuir, 2005, 21, 793-796.	3.5	15
99	Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, 2004, , 1978.	4.1	185
100	Effects of capping thiols on the laser-induced fusion of gold nanoparticles and deposition onto glass substrates in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247, 105-113.	4.7	15
101	Surface-Enhanced Nonresonance Raman Scattering of Rhodamine 6G Molecules Adsorbed on Gold Nanorod Films. Japanese Journal of Applied Physics, 2004, 43, L554-L556.	1.5	80
102	Surface-Enhanced Nonresonance Raman Scattering from Size- and Morphology-Controlled Gold Nanoparticle Films. Journal of Physical Chemistry B, 2004, 108, 11660-11665.	2.6	128
103	Immobilization of Gold Nanorods on the Glass Substrate by the Electrostatic Interactions for Localized Plasmon Sensing. Chemistry Letters, 2004, 33, 454-455.	1.3	50
104	Particle-size effects on the photocurrent efficiency of nanostructured assemblies consisting of gold nanoparticles and a ruthenium complex–viologen linked thiol. Journal of Electroanalytical Chemistry, 2003, 550-551, 303-307.	3.8	28
105	Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chemical Communications, 2003, , 2376-2377.	4.1	220
106	Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation. Japanese Journal of Applied Physics, 2003, 42, 1749-1750.	1.5	29
107	Novel Method for Spatioselective Electroless Plating Catalyzed by Laser-Deposited Gold Nanoparticles. Japanese Journal of Applied Physics, 2003, 42, 7640-7641.	1.5	10
108	Surface-enhanced infrared absorption spectrometry of L-cysteine on laser-deposited gold nanoparticles. Bunseki Kagaku, 2003, 52, 661-664.	0.2	2

#	Article	IF	CITATIONS
109	Effects of thiol capping agents on the laser-induced deposition of gold nanoparticles Bunseki Kagaku, 2002, 51, 797-801.	0.2	1
110	Adsorption behaviors of methyl orange to alternate polyion films as studied by in-situ absorption and second harmonic generation measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 467-472.	4.7	6
111	Laser-Induced Deposition of Gold Nanoparticles onto Glass Substrates in Cyclohexane. Nano Letters, 2001, 1, 365-369.	9.1	41
112	Deposition of thiol-passivated gold nanoparticles onto glass plates by pulsed 532-nm laser irradiation: effects of thiol. Studies in Surface Science and Catalysis, 2001, 132, 359-362.	1.5	9
113	De Novo-designed Peptide Transforms Golgi-specific Lipids into Golgi-like Nanotubules. Journal of Biological Chemistry, 2001, 276, 41224-41228.	3.4	41
114	Enormous Size Growth of Thiol-passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chemistry Letters, 2000, 29, 310-311.	1.3	68
115	Effects of aliphatic tails on monolayer structures of hemicyanine dyes at the air/water interface as studied by in situ SHG measurements and surface pressure-area isotherms. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 75-80.	3.9	12
116	Effect of aliphatic tails on surface anchoring of amphiphilic ruthenium-polypyridine complexes in water-cast polymer films as studied by photoinduced electron-transfer and optical second harmonic generation. Thin Solid Films, 1999, 352, 1-5.	1.8	3
117	Photoacoust1C Studies on Very Thin Poly(Methyl Methacrylate) Films Prepared by a Cast1Ng-On-Water Method. Spectroscopy Letters, 1999, 32, 371-382.	1.0	0
118	Temperature Effects on Molecular Alignments at the Surface of Ultrathin Films Studied by SHG and Fluorescence Techniques Analytical Sciences, 1997, 13, 343-346.	1.6	9
119	Observation of Crystallization of Vapor-deposited TPD Films by AFM and FFM. Chemistry Letters, 1994, 23, 969-972.	1.3	91
120	Aggregate Formation of Pyrene-1-Carboxylic Acid in an Ion-complexed Langmuir-Blodgett Film Induced by Contact with HCl Gas. Chemistry Letters, 1994, 23, 731-734.	1.3	0
121	Photoinduced proton transfer in Langmuir-Blodgett films. Thin Solid Films, 1992, 210-211, 378-380.	1.8	8