Magdalena K Gȩbala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking. Journal of the American Chemical Society, 2022, 144, 1718-1728.	6.6	8
2	DNA Electrostatics: From Theory to Application. ChemElectroChem, 2022, 9, .	1.7	2
3	CENP-N promotes the compaction of centromeric chromatin. Nature Structural and Molecular Biology, 2022, 29, 403-413.	3.6	32
4	Cation enrichment in the ion atmosphere is promoted by local hydration of DNA. Physical Chemistry Chemical Physics, 2021, 23, 23203-23213.	1.3	10
5	Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophysical Journal, 2019, 117, 1116-1124.	0.2	28
6	Ion counting demonstrates a high electrostatic field generated by the nucleosome. ELife, 2019, 8, .	2.8	43
7	Dissecting the Electrostatics of Nucleic Acids. Biophysical Journal, 2018, 114, 441a-442a.	0.2	0
8	Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH ⁺ Å·C Wobble Formation in Double-Stranded DNA. Journal of the American Chemical Society, 2017, 139, 7540-7548.	6.6	23
9	Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and <i>in Vitro</i> -Selected RNA Tertiary Motifs in a Multistep Folding Pathway. Journal of the American Chemical Society, 2017, 139, 18576-18589.	6.6	14
10	DNA Intercalators for Detection of DNA Hybridisation: SCS(MI)–MP2 Calculations and Electrochemical Impedance Spectroscopy. ChemPlusChem, 2016, 81, 604-612.	1.3	4
11	Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?. Journal of the American Chemical Society, 2016, 138, 10925-10934.	6.6	50
12	Electric Field Modulation of Silicon upon Tethering of Highly Charged Nucleic Acids. Capacitive Studies on DNAâ€modified Silicon (111). Electroanalysis, 2016, 28, 2367-2372.	1.5	0
13	Potentialâ€Assisted DNA Immobilization as a Prerequisite for Fast and Controlled Formation of DNA Monolayers. Angewandte Chemie - International Edition, 2015, 54, 15064-15068.	7.2	53
14	Intercalation of Proflavine in ssDNA Aptamers: Effect on Binding of the Specific Target Chloramphenicol. Electroanalysis, 2015, 27, 1836-1841.	1.5	7
15	Electrochemical detection of synthetic DNA and native 16S rRNA fragments on a microarray using a biotinylated intercalator as coupling site for an enzyme label. Talanta, 2015, 143, 19-26.	2.9	12
16	Competitive interaction of monovalent cations with DNA from 3D-RISM. Nucleic Acids Research, 2015, 43, 8405-8415.	6.5	47
17	Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. Journal of the American Chemical Society, 2015, 137, 14705-14715.	6.6	65
18	The Effect of Interfacial Design on the Electrochemical Detection of DNA and MicroRNA Using Methylene Blue at Lowâ€Đensity DNA Films. ChemElectroChem, 2014, 1, 165-171.	1.7	26

Magdalena K Gȩbala

#	Article	IF	CITATIONS
19	Electrical Potential-Assisted DNA Hybridization. How to Mitigate Electrostatics for Surface DNA Hybridization. ACS Applied Materials & Interfaces, 2014, 6, 21851-21858.	4.0	31
20	Amperometric sensing $\hat{a} \in$ "Bioelectroanalysis. Analytical and Bioanalytical Chemistry, 2013, 405, 3423-3426.	1.9	2
21	Kinetic and Thermodynamic Hysteresis Imposed by Intercalation of Proflavine in Ferroceneâ€Modified Doubleâ€Stranded DNA. ChemPhysChem, 2013, 14, 2208-2216.	1.0	8
22	A Chemical Liftâ€off Process: Removing Nonâ€6pecific Adsorption in an Electrochemical Epstein–Barr Virus Immunoassay. ChemPhysChem, 2013, 14, 2198-2207.	1.0	6
23	Understanding properties of electrified interfaces as a prerequisite for label-free DNA hybridization detection. Physical Chemistry Chemical Physics, 2012, 14, 14933.	1.3	38
24	Detection of DNA hybridization using electrochemical impedance spectroscopy and surface enhanced Raman scattering. Electrochemistry Communications, 2012, 19, 59-62.	2.3	19
25	Impact of Single Basepair Mismatches on Electronâ€Transfer Processes at Fcâ€PNAâ‹DNA Modified Gold Surfaces. ChemPhysChem, 2012, 13, 131-139.	1.0	13
26	Amplified detection of DNA hybridization using post-labelling with a biotin-modified intercalator. Faraday Discussions, 2011, 149, 11-22.	1.6	13
27	Impedimetric Detection of Hairpin Ribozyme Activity. Electroanalysis, 2011, 23, 37-42.	1.5	2
28	Mechanistic Studies of Fcâ€PNA(â‹DNA) Surface Dynamics Based on the Kinetics of Electronâ€Transfer Processes. Chemistry - A European Journal, 2011, 17, 9678-9690.	1.7	22
29	A new AC-SECM mode. Electrochemistry Communications, 2011, 13, 689-693.	2.3	14
30	Controlled Orientation of DNA in a Binary SAM as a Key for the Successful Determination of DNA Hybridization by Means of Electrochemical Impedance Spectroscopy. ChemPhysChem, 2010, 11, 2887-2895.	1.0	57
31	A Singleâ€Electrode, Dualâ€Potential Ferrocene–PNA Biosensor for the Detection of DNA. ChemBioChem, 2010, 11, 1754-1761.	1.3	41
32	A biotinylated intercalator for selective post-labeling of double-stranded DNA as a basis for high-sensitive DNA assays. Electrochemistry Communications, 2010, 12, 684-688.	2.3	14
33	Optimization of an Electrochemical DNA Assay by Using a 48â€Electrode Array and Redox Amplification Studies by Means of Scanning Electrochemical Microscopy. ChemBioChem, 2009, 10, 1193-1199.	1.3	26
34	Labelâ€Free Detection of DNA Hybridization in Presence of Intercalators Using Electrochemical Impedance Spectroscopy. Electroanalysis, 2009, 21, 325-331.	1.5	71
35	Catalytic Oxidative Cyclocondensation of oâ€Aminophenols to 2â€Aminoâ€3Hâ€phenoxazinâ€3â€ones. Synthet Communications, 2007, 37, 1779-1789.	ic 1.1	46