
Fernando A Fierro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2915251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination product of dermal matrix, preconditioned human mesenchymal stem cells and timolol promotes wound healing in the porcine wound model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1615-1623.	1.6	4
2	Mesenchymal Stromal Cells Regulate Sialylations of N-Glycans, Affecting Cell Migration and Survival. International Journal of Molecular Sciences, 2021, 22, 6868.	1.8	10
3	Real time PCR assays to detect and quantify the nematodes Pratylenchus vulnus and Mesocriconema xenoplax. Crop Protection, 2021, 145, 105617.	1.0	4
4	High Mannose N-Glycans Promote Migration of Bone-Marrow-Derived Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 7194.	1.8	7
5	Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem Cells Translational Medicine, 2020, 9, 1353-1364.	1.6	34
6	Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7633-7644.	3.3	63
7	Modeling Snyder-Robinson Syndrome in multipotent stromal cells reveals impaired mitochondrial function as a potential cause for deficient osteogenesis. Scientific Reports, 2019, 9, 15395.	1.6	7
8	Are Amniotic Fluid Products Stem Cell Therapies? A Study of Amniotic Fluid Preparations for Mesenchymal Stem Cells With Bone Marrow Comparison. American Journal of Sports Medicine, 2019, 47, 1230-1235.	1.9	26
9	Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions. Transfusion, 2019, 59, 893-897.	0.8	13
10	Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B. Genes, 2018, 9, 196.	1.0	13
11	FGF2 Induces Migration of Human Bone Marrow Stromal Cells by Increasing Core Fucosylations on N-Glycans of Integrins. Stem Cell Reports, 2018, 11, 325-333.	2.3	25
12	Concise Review: Stem Cells in Osteoimmunology. Stem Cells, 2017, 35, 1461-1467.	1.4	43
13	Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Research and Therapy, 2017, 8, 69.	2.4	42
14	Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Translational Medicine, 2017, 6, 1880-1893.	1.6	41
15	Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Frontiers in Physiology, 2016, 7, 56.	1.3	92
16	Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrowâ€Đerived Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 2016, 117, 2128-2137.	1.2	25
17	Neurogenic Potential of Engineered Mesenchymal Stem Cells Overexpressing VEGF. Cellular and Molecular Bioengineering, 2016, 9, 96-106.	1.0	13
18	Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16053.	1.8	50

Fernando A Fierro

#	Article	IF	CITATIONS
19	Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols. Journal of Cellular Biochemistry, 2016, 117, 300-307.	1.2	15
20	Clinically relevant formulation and conditions for transportation of genetically modified bone marrow mesenchymal stem cells engineered to overexpress vascular endothelial growth factor. Cytotherapy, 2015, 17, S42.	0.3	1
21	Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells. Frontiers in Cell and Developmental Biology, 2015, 3, 68.	1.8	33
22	<i>In Vitro</i> Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds. BioMed Research International, 2015, 2015, 1-14.	0.9	52
23	Hypoxic Preconditioning of Mesenchymal Stromal Cells Induces Metabolic Changes, Enhances Survival, and Promotes Cell Retention In Vivo. Stem Cells, 2015, 33, 1818-1828.	1.4	171
24	Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1074-1082.	1.4	123
25	MicroRNA-23a mediates post-transcriptional regulation of CXCL12 in bone marrow stromal cells. Haematologica, 2014, 99, 997-1005.	1.7	28
26	MiR-134-mediated β1 integrin expression and function in mesenchymal stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3396-3404.	1.9	14
27	The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation. Cartilage, 2013, 4, 329-338.	1.4	4
28	The oncogene LRF is a survival factor in chondrosarcoma and contributes to tumor malignancy and drug resistance. Carcinogenesis, 2012, 33, 2076-2083.	1.3	21
29	miR-10a overexpression is associated with NPM1 mutations and MDM4 downregulation in	0.2	43
30	Effects on Proliferation and Differentiation of Multipotent Bone Marrow Stromal Cells Engineered to Express Growth Factors for Combined Cell and Gene Therapy. Stem Cells, 2011, 29, 1727-1737.	1.4	115
31	Characterization and <i>In Vivo</i> Testing of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells. Tissue Engineering - Part A, 2011, 17, 1517-1525.	1.6	85
32	Small Animal Models of Tissue Regeneration. , 2011, , 379-391.		1
33	Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematologica, 2010, 95, 542-550.	1.7	190
34	Use of Human Mesenchymal Cells to Improve Vascularization in a Mouse Model for Scaffold-Based Dermal Regeneration. Tissue Engineering - Part A, 2009, 15, 1191-1200.	1.6	73
35	Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Experimental Hematology, 2009, 37, 867-875.e1.	0.2	92
36	Combining SDF-1/CXCR4 antagonism and chemotherapy in relapsed acute myeloid leukemia. Leukemia, 2009, 23, 393-396.	3.3	28

#	Article	IF	CITATIONS
37	BCR/ABL Expression of Myeloid Progenitors Increases β1-Integrin Mediated Adhesion to Stromal Cells. Journal of Molecular Biology, 2008, 377, 1082-1093.	2.0	37
38	Inhibition of platelet-derived growth factor receptor? by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Proliferation, 2007, 40, 355-366.	2.4	91
39	Nonstimulated Human Uncommitted Mesenchymal Stem Cells Express Cell Markers of Mesenchymal and Neural Lineages. Stem Cells and Development, 2005, 14, 408-414.	1.1	40
40	Marrow-derived mesenchymal stem cells: Role in epithelial tumor cell determination. Clinical and Experimental Metastasis, 2004, 21, 313-319.	1.7	69