
Seine A Shintani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2914269/publications.pdf Version: 2024-02-01

SEINE & SHINTANI

#	Article	IF	CITATIONS
1	Cardiac thin filament regulation and the Frank–Starling mechanism. Journal of Physiological Sciences, 2014, 64, 221-232.	2.1	77
2	Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients. Biochemical and Biophysical Research Communications, 2012, 417, 607-612.	2.1	47
3	Sarcomere length nanometry in rat neonatal cardiomyocytes expressed with α-actinin–AcGFP in Z discs. Journal of General Physiology, 2014, 143, 513-524.	1.9	45
4	High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat. Biochemical and Biophysical Research Communications, 2015, 457, 165-170.	2.1	30
5	Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. Journal of General Physiology, 2016, 148, 341-355.	1.9	19
6	Single-cell temperature mapping with fluorescent thermometer nanosheets. Journal of General Physiology, 2020, 152, .	1.9	16
7	Tri-Functional Calcium-Deficient Calcium Titanate Coating on Titanium Metal by Chemical and Heat Treatment. Coatings, 2019, 9, 561.	2.6	13
8	Microscopic heat pulses activate cardiac thin filaments. Journal of General Physiology, 2019, 151, 860-869.	1.9	13
9	Iodine-Loaded Calcium Titanate for Bone Repair with Sustainable Antibacterial Activity Prepared by Solution and Heat Treatment. Nanomaterials, 2021, 11, 2199.	4.1	12
10	Analysis of spontaneous oscillations for a three-state power-stroke model. Physical Review E, 2017, 95, 022411.	2.1	11
11	InÂvivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart. Progress in Biophysics and Molecular Biology, 2017, 124, 31-40.	2.9	11
12	Bioactivation Treatment with Mixed Acid and Heat on Titanium Implants Fabricated by Selective Laser Melting Enhances Preosteoblast Cell Differentiation. Nanomaterials, 2021, 11, 987.	4.1	10
13	Model simulation of the SPOC wave in a bundle of striated myofibrils. Biophysics and Physicobiology, 2016, 13, 217-226.	1.0	8
14	Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Scientific Reports, 2019, 9, 9355.	3.3	8
15	Mechanism of contraction rhythm homeostasis for hyperthermal sarcomeric oscillations of neonatal cardiomyocytes. Scientific Reports, 2020, 10, 20468.	3.3	8
16	Dynamic properties of bio-motile systems with a liquid-crystalline structure. Molecular Crystals and Liquid Crystals, 2017, 647, 127-150.	0.9	6
17	Thermal Activation of Thin Filaments in Striated Muscle. Frontiers in Physiology, 2020, 11, 278.	2.8	6
18	Simple Dispersion Equation Based on Lamb-Wave Model for Propagating Pulsive Waves in Human Heart Wall. Journal of the Physical Society of Japan, 2015, 84, 124802.	1.6	5

SEINE A SHINTANI

#	Article	IF	CITATIONS
19	Effects of high-pressure treatment on the structure and function of myofibrils. Biophysics and Physicobiology, 2021, 18, 85-95.	1.0	5
20	Drug-Releasing Gelatin Coating Reinforced with Calcium Titanate Formed on Ti–6Al–4V Alloy Designed for Osteoporosis Bone Repair. Coatings, 2022, 12, 139.	2.6	5
21	Does the Hyperthermal Sarcomeric Oscillations Manifested by Body Temperature Support the Periodic Ventricular Dilation With Each Heartbeat?. Frontiers in Physiology, 2022, 13, 846206.	2.8	4
22	Hyperthermal sarcomeric oscillations generated in warmed cardiomyocytes control amplitudes with chaotic properties while keeping cycles constant. Biochemical and Biophysical Research Communications, 2022, 611, 8-13.	2.1	3
23	A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method. Journal of the Physical Society of Japan, 2016, 85, 044802.	1.6	2
24	Real-time scanning electron microscopy of unfixed tissue in the solution using a deformable and electron-transmissive film. Microscopy (Oxford, England), 2022, 71, 297-301.	1.5	1
25	Single Sarcomere Imaging by Quantum Dots (Qdots) in the Heart. Biophysical Journal, 2010, 98, 555a.	0.5	0
26	Single Sarcomere Imaging in Cardiomyocytes with Quantum Dots (Qdots): Physiological Significance of SPOC in Cardiac Beat. Biophysical Journal, 2010, 98, 555a.	0.5	0
27	Analyses of Sarcomeric Self-Oscillatory Properties of Rat Neonatal Cardiomyocytes. Biophysical Journal, 2012, 102, 353a-354a.	0.5	0
28	Microscopic Heat Pulses Induce Ca2+-Independent Contraction of Cardiomyocytes. Biophysical Journal, 2013, 104, 154a.	0.5	0
29	3SDA-04 Real-time high-resolution cardiac imaging in vivo(3SDA Biophysics toward In Vivo) Tj ETQq1 1 0.784314	ŀrg₿T /Ov	erlgck 10 Tf 5
30	2P142 High-resolution analysis of sarcomeric auto-oscillations in rat neonatal cardiomyocytes(10.) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
31	Thermal Activation of Cardiac Thin Filaments Induces Contraction without Intracellular Ca2+ Changes: Studies with Cardiomyocytes and an In Vitro Motility Assay. Biophysical Journal, 2014, 106, 561a.	0.5	0
32	Sarcomere Length Nanometry in Cardiomyocytes Expressed with α-Actinin-AcGFP in Z-Discs. Biophysical Journal, 2014, 106, 773a-774a.	0.5	0
33	Simultaneous Imaging of Local Calcium and Single Sarcomere Length in Rat Neonatal Cardiomyocytes via Expression of Cameleon-Nano in Z-Discs. Biophysical Journal, 2014, 106, 567a.	0.5	0
34	Simultaneous High-Precision Imaging of Local Calcium and Single Sarcomere Length in Rat Neonatal Cardiomyocytes via Expression of Yellow Cameleon-Nano140 in Z-Discs. Biophysical Journal, 2016, 110, 367a.	0.5	0
35	Sarcomere length nanometry in rat neonatal cardiomyocytes expressed with α-actinin–AcGFP in Z discs. Journal of Cell Biology, 2014, 205, 20510IA71.	5.2	0