List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2914084/publications.pdf Version: 2024-02-01

ΓΙ ΛΥΙΛ ΟΙΝΙΖΑΟΙ

#	Article	IF	CITATIONS
1	Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?. PLoS ONE, 2014, 9, e106662.	2.5	210
2	Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. International Journal of Food Microbiology, 2010, 144, 64-71.	4.7	204
3	The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environmental Microbiology, 2012, 14, 559-566.	3.8	140
4	Application of molecular techniques for identification of fungal communities colonising paper material. International Biodeterioration and Biodegradation, 2006, 58, 133-141.	3.9	106
5	Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian Manuscript Dated from the Thirteenth Century. Microbial Ecology, 2010, 60, 69-80.	2.8	94
6	The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. International Biodeterioration and Biodegradation, 2015, 99, 1-7.	3.9	88
7	When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in Plant Science, 2020, 11, 553087.	3.6	83
8	Biodeterioration of Paper: A SEM Study of Fungal Spoilage Reproduced Under Controlled Conditions. Macromolecular Symposia, 2006, 238, 57-66.	0.7	76
9	How Peroxisomes Affect Aflatoxin Biosynthesis in Aspergillus Flavus. PLoS ONE, 2012, 7, e48097.	2.5	70
10	Unmasking the measlesâ€like parchment discoloration: molecular and microanalytical approach. Environmental Microbiology, 2015, 17, 427-443.	3.8	69
11	Efficacy of Biofertilizers: Challenges to Improve Crop Production. , 2016, , 17-40.		67
12	Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular techniques: A case study. International Biodeterioration and Biodegradation, 2009, 63, 161-168.	3.9	65
13	Future directions and challenges in biodeterioration research on historic materials and cultural properties. International Biodeterioration and Biodegradation, 2018, 129, 10-12.	3.9	63
14	Application of electronic nose technology for the detection of fungal contamination in library paper. International Biodeterioration and Biodegradation, 2004, 54, 303-309.	3.9	61
15	Fungal biodeterioration of historical library materials stored in Compactus movable shelves. International Biodeterioration and Biodegradation, 2012, 75, 83-88.	3.9	58
16	Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio, 2018, 47, 30-40.	5.5	55
17	Use of biochemical indices in the mediterranean environment: comparison among soils under different forest vegetation. Journal of Microbiological Methods, 1999, 36, 21-28.	1.6	54
18	Biodegradation of inorganic components in paper documents: Formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. International Biodeterioration and Biodegradation, 2010, 64, 499-505.	3.9	51

#	Article	IF	CITATIONS
19	Monitoring the effects of different conservation treatments on paper-infecting fungi. International Biodeterioration and Biodegradation, 2013, 84, 333-341.	3.9	50
20	Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 2019, 103, 53-68.	3.6	50
21	Amid the possible causes of a very famous foxing: molecular and microscopic insight into <scp>L</scp> eonardo da <scp>V</scp> inci's selfâ€portrait. Environmental Microbiology Reports, 2015, 7, 849-859.	2.4	46
22	Non-destructive spectroscopic characterization of parchment documents. Vibrational Spectroscopy, 2011, 55, 267-272.	2.2	45
23	Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production. International Journal of Food Microbiology, 2014, 189, 1-10.	4.7	40
24	A Combined Approach to Assess the Microbial Contamination of the Archimedes Palimpsest. Microbial Ecology, 2015, 69, 118-134.	2.8	36
25	Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Applied and Environmental Microbiology, 2019, 85, .	3.1	36
26	Genotypic and Phenotypic Versatility of Aspergillus flavus during Maize Exploitation. PLoS ONE, 2013, 8, e68735.	2.5	35
27	Metastructure of illuminations by infrared thermography. Journal of Cultural Heritage, 2018, 31, 53-62.	3.3	35
28	Phenotype MicroArrayâ"¢ system in the study of fungal functional diversity and catabolic versatility. Research in Microbiology, 2016, 167, 710-722.	2.1	34
29	Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the <scp>L</scp> ewis <scp>C</scp> hessmen. Environmental Microbiology, 2013, 15, 1050-1062.	3.8	30
30	Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil. Scientific Reports, 2016, 6, 22933.	3.3	29
31	Biological invasion in the indoor environment: the spread of EurotiumÂhalophilicum on library materials. International Biodeterioration and Biodegradation, 2017, 118, 34-44.	3.9	29
32	Fungal bioleaching of mineral components in a twentieth-century illuminated parchment. Analytical and Bioanalytical Chemistry, 2012, 402, 1541-1550.	3.7	28
33	Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polymer Degradation and Stability, 2014, 108, 1-11.	5.8	28
34	Microscopic observations of paper and parchment: the archaeology of small objects. Heritage Science, 2019, 7, .	2.3	27
35	Electronic Nose for the Early Detection of Moulds in Libraries and Archives. Indoor and Built Environment, 2004, 13, 387-395.	2.8	24
36	Growth responses to and accumulation of vanadium in agricultural soil fungi. Applied Soil Ecology, 2012, 58, 1-11.	4.3	24

#	Article	IF	CITATIONS
37	The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History. Frontiers in Microbiology, 2020, 11, 593401.	3.5	24
38	The Indian drawings of the poet Cesare Pascarella: non-destructive analyses and conservation treatments. Analytical and Bioanalytical Chemistry, 2012, 402, 1517-1528.	3.7	21
39	Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts. FEMS Microbiology Ecology, 2016, 92, fiw080.	2.7	21
40	Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Frontiers in Microbiology, 2021, 12, 698491.	3.5	21
41	Microbial Life and Death in a Foxing Stain: a Suggested Mechanism of Photographic Prints Defacement. Microbial Ecology, 2017, 73, 815-826.	2.8	20
42	Atomic Force Microscopy Applied to the Study of Whatman Paper Surface Deteriorated by a Cellulolytic Filamentous Fungus. Macromolecular Symposia, 2006, 238, 92-97.	0.7	19
43	Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Applied Microbiology and Biotechnology, 2018, 102, 1019-1033.	3.6	19
44	Biotransformation of β-hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. Chemosphere, 2015, 137, 101-107.	8.2	18
45	Fungal biosorption of silver particles on 20th-century photographic documents. International Biodeterioration and Biodegradation, 2013, 84, 367-371.	3.9	17
46	Metabolic profiling reveals a functional succession of active fungi during the decay of Mediterranean plant litter. Soil Biology and Biochemistry, 2013, 60, 210-219.	8.8	17
47	Routes of phlogopite weathering by three fungal strains. Fungal Biology, 2016, 120, 1582-1599.	2.5	17
48	Lead soaps formation and biodiversity in a XVIII Century wax seal coloured with minium. Environmental Microbiology, 2020, 22, 1517-1534.	3.8	17
49	Mould Growth on Library Materials Stored in Compactus-Type Shelving Units. , 2011, , 193-206.		16
50	Co-inoculum of Beauveria brongniartii and B. bassiana shows in vitro different metabolic behaviour in comparison to single inoculums. Scientific Reports, 2017, 7, 13102.	3.3	15
51	Microbial Ecology of Indoor Environments: The Ecological and Applied Aspects of Microbial Contamination in Archives, Libraries and Conservation Environments. , 2011, , 153-178.		14
52	A century later: rediscovery, culturing and phylogenetic analysis of Diploöspora rosea, a rare onygenalean hyphomycete. Antonie Van Leeuwenhoek, 2015, 108, 1023-1035.	1.7	14
53	18th Century knowledge on microbial attacks on parchment: Analytical and historical evidence. International Biodeterioration and Biodegradation, 2018, 134, 76-82.	3.9	14
54	Use of biochemical indexes and changes in organic matter dynamics in a Mediterranean environment: a comparison between soils under arable and set-aside managements. Organic Geochemistry, 1999, 30, 453-459.	1.8	13

#	Article	IF	CITATIONS
55	Metabolic profiling of <i>Minimedusa polyspora</i> (Hotson) Weresub & P.M. LeClair, a cellulolytic fungus isolated from Mediterranean maquis, in southern Italy. Plant Biosystems, 2014, 148, 333-341.	1.6	13
56	Hyperspectral and molecular analysis of Stagonospora nodorum blotch disease in durum wheat. European Journal of Plant Pathology, 2015, 141, 689-702.	1.7	12
57	A simple method for measuring fungal metabolic quotient and comparing carbon use efficiency of different isolates: Application to Mediterranean leaf litter fungi. Plant Biosystems, 2017, 151, 371-376.	1.6	12
58	How Tillage and Crop Rotation Change the Distribution Pattern of Fungi. Frontiers in Microbiology, 2021, 12, 634325.	3.5	12
59	A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2{middle dot}14H2O. American Mineralogist, 2014, 99, 1761-1765.	1.9	11
60	Skeleton bones in museum indoor environments offer niches for fungi and are affected by weathering and deposition of secondary minerals. Environmental Microbiology, 2020, 22, 59-75.	3.8	9
61	Manganese translocation and concentration on Quercus cerris decomposing leaf and wood litter by an ascomycetous fungus: an active process with ecosystem consequences?. FEMS Microbiology Ecology, 2018, 94, .	2.7	8
62	Extreme Colonizers and Rapid Profiteers: The Challenging World of Microorganisms That Attack Paper and Parchment. , 2021, , 79-113.		8
63	Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity. Insects, 2021, 12, 127.	2.2	8
64	Fungal-induced atmospheric iron corrosion in an indoor environment. International Biodeterioration and Biodegradation, 2021, 159, 105204.	3.9	8
65	Fungal strategies of potassium extraction from silicates of different resistance as manifested in differential weathering and gene expression. Geochimica Et Cosmochimica Acta, 2022, 316, 168-200.	3.9	7
66	Effects of Cedrus atlantica and Pinus halepensis on the chemistry and fertility of a Mediterranean soil after 40 years. Canadian Journal of Soil Science, 2001, 81, 553-560.	1.2	4
67	Discoveries and oddities in library materials. Microchemical Journal, 2016, 124, 568-577.	4.5	3
68	Overlap in substrate utilisation and spatial exclusion in some microfungi which act as early cellulose colonisers in a Mediterranean environment. Pedobiologia, 2017, 61, 9-21.	1.2	3
69	History and Surface Condition of the Lewis Chessmen in the Collection of the National Museums Scotland (Hebrides, late 12th-early 13thÂcenturies). ArcheoSciences, 2011, , 249-258.	0.1	3
70	Soil humic acids formation and characteristics in a xeric mollisol reforested with two tree species. Developments in Soil Science, 2002, 28, 393-404.	0.5	2
71	Energy use in the A and B horizons of the soil under a pine and a cedar stand. Developments in Soil Science, 2002, 28, 405-414.	0.5	2
72	Atomic force microscopy imaging directly on paper: a study of library materials degradation. , 2005, , .		2

#	Article	IF	CITATIONS
73	Improvement of Soilborne Pests Control with Agronomical Practices Exploiting the Interaction of Entomophagous Fungi. , 2017, , 577-591.		2
74	Unusual Perforations in Phlogopite Crystals from Caldara di Manziana (Italy) Caused by Sulphuric Acid Generated by Microbial Oxidation of H2S Emanations. Minerals (Basel, Switzerland), 2021, 11, 547.	2.0	0