
Jitka MužÃ-kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2913377/publications.pdf Version: 2024-02-01

Ιτκλ ΜιιΔ3/ ΔκονΔ:

#	Article	IF	CITATIONS
1	Study of rheological and tableting properties of lubricated mixtures of co-processed dry binders for orally disintegrating tablets. European Journal of Pharmaceutical Sciences, 2022, 168, 106035.	1.9	7
2	Fused Deposition Modeling as a Possible Approach for the Preparation of Orodispersible Tablets. Pharmaceuticals, 2022, 15, 69.	1.7	9
3	Comparison of Compressibility, Compactability, and Lubricant Sensitivity of Two Partially Pregelatinized Starches. Starch/Staerke, 2021, 73, 2000166.	1.1	6
4	A New Approach to the Dissolution Tests Management to Obtain Kinetic and Thermodynamic Data: Release of a Model Drug from Glyceryl Behenate Matrix Tablets. European Journal of Lipid Science and Technology, 2021, 123, 2000235.	1.0	0
5	Systematic study of paracetamol powder mixtures and granules tabletability: Key role of rheological properties and dynamic image analysis. International Journal of Pharmaceutics, 2021, 608, 121110.	2.6	8
6	A Study of Compressibility, Compactability and Mucoadhesivity of Tableting Materials for Matrix Systems Based on Chitosan. Polymers, 2021, 13, 3636.	2.0	1
7	The effect of alcohol on ionizing and non-ionizing drug release from hydrophilic, lipophilic and dual matrix tablets. Saudi Pharmaceutical Journal, 2020, 28, 187-195.	1.2	5
8	A study of the combination of microcrystalline cellulose and mannitol in a co-processed dry binder and in a physical mixture for the use in orally disintegrating tablets Acta Poloniae Pharmaceutica, 2019, 76, 355-365.	0.3	2
9	Comparative evaluation of the use of dry binders in a physical mixture or as a coprocessed dry binder in matrix tablets with extended drug release. Acta Pharmaceutica, 2018, 68, 295-311.	0.9	5
10	A study of a novel coprocessed dry binder composed of α -lactose monohydrate, microcrystalline cellulose and corn starch. Pharmaceutical Development and Technology, 2017, 22, 964-971.	1.1	7
11	A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride. Acta Pharmaceutica, 2016, 66, 433-441.	0.9	3
12	Formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders. European Journal of Pharmaceutical Sciences, 2016, 95, 36-45.	1.9	12
13	Compressibility of tableting materials and properties of tablets with glyceryl behenate. Acta Pharmaceutica, 2015, 65, 91-98.	0.9	6
14	Comparison of properties of tablets and energy profile of compaction of two spray-dried lactoses. Acta Poloniae Pharmaceutica, 2013, 70, 129-35.	0.3	1
15	A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose. Ceska A Slovenska Farmacie, 2013, 62, 127-31.	0.3	0
16	A study of micronized poloxamers as lubricants in direct compression of tablets. Acta Poloniae Pharmaceutica, 2013, 70, 1087-96.	0.3	1
17	A study of a co-processed dry binder composed of microcrystalline cellulose and glycerol monostearate. Ceska A Slovenska Farmacie, 2012, 61, 229-33.	0.3	0
18	A study of the compaction process and the properties of tablets made of a new co-processed starch excipient. Drug Development and Industrial Pharmacy, 2011, 37, 576-582.	0.9	12

#	Article	IF	CITATIONS
19	Energy evaluation of the compaction process of directly compressible isomalt. Ceska A Slovenska Farmacie, 2011, 60, 11-6.	0.3	1
20	A Study of the Properties of Compacts from Silicified Microcrystalline Celluloses. Drug Development and Industrial Pharmacy, 2007, 33, 775-781.	0.9	22