
Paula Paredes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/291315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agricultural Water Management, 2022, 261, 107362.	2.4	15
2	Crop and landscape water requirements. , 2022, , .		0
3	Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agricultural Water Management, 2021, 243, 106466.	2.4	35
4	Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agricultural Water Management, 2021, 243, 106196.	2.4	32
5	Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products. Agricultural Water Management, 2021, 248, 106543.	2.4	19
6	Updated single and dual crop coefficients for tree and vine fruit crops. Agricultural Water Management, 2021, 250, 106645.	2.4	51
7	Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization. Agricultural Water Management, 2021, 252, 106663.	2.4	21
8	Transpiration and Water Use of an Irrigated Traditional Olive Grove with Sap-Flow Observations and the FAO56 Dual Crop Coefficient Approach. Water (Switzerland), 2021, 13, 2466.	1.2	12
9	Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agricultural Water Management, 2020, 241, 106357.	2.4	100
10	Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 2020, 241, 106197.	2.4	62
11	A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural Water Management, 2020, 239, 106267.	2.4	46
12	Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agricultural Water Management, 2020, 240, 106210.	2.4	49
13	Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation. Agricultural Water Management, 2019, 215, 86-102.	2.4	31
14	Crop Coefficients and Transpiration of a Super Intensive Arbequina Olive Orchard using the Dual Kc Approach and the Kcb Computation with the Fraction of Ground Cover and Height. Water (Switzerland), 2019, 11, 383.	1.2	26
15	Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual K c approach. Agricultural Water Management, 2018, 195, 11-24.	2.4	41
16	Daily reference crop evapotranspiration with reduced data sets in the humid environments of Azores islands using estimates of actual vapor pressure, solar radiation, and wind speed. Theoretical and Applied Climatology, 2018, 134, 1115-1133.	1.3	21
17	Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theoretical and Applied Climatology, 2018, 134, 595-611.	1.3	27
18	Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agricultural Water Management, 2018, 210, 340-353.	2.4	46

PAULA PAREDES

#	Article	IF	CITATIONS
19	Evapotranspiration Partition and Crop Coefficients of Tifton 85 Bermudagrass as Affected by the Frequency of Cuttings. Application of the FAO56 Dual Kc Model. Water (Switzerland), 2018, 10, 558.	1.2	17
20	Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management, 2017, 179, 132-143.	2.4	25
21	Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agricultural Water Management, 2017, 189, 5-18.	2.4	26
22	Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. International Journal of Climatology, 2017, 37, 2378-2397.	1.5	42
23	Parameterization of AquaCrop model for vining pea biomass and yield predictions and assessing impacts of irrigation strategies considering various sowing dates. Irrigation Science, 2017, 35, 27-41.	1.3	17
24	Comparing Sprinkler and Surface Irrigation for Wheat Using Multi-Criteria Analysis: Water Saving vs. Economic Returns. Water (Switzerland), 2017, 9, 50.	1.2	19
25	Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water (Switzerland), 2017, 9, 393.	1.2	28
26	Predicting Maize Transpiration, Water Use and Productivity for Developing Improved Supplemental Irrigation Schedules in Western Uruguay to Cope with Climate Variability. Water (Switzerland), 2016, 8, 309.	1.2	20
27	Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability. Water Resources Management, 2016, 30, 3769-3791.	1.9	37
28	Ecohydrology of groundwaterâ€dependent grasslands of the semiâ€arid Horqin sandy land of inner Mongolia focusing on evapotranspiration partition. Ecohydrology, 2016, 9, 1052-1067.	1.1	15
29	Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns. Water Resources Management, 2016, 30, 3793-3814.	1.9	13
30	Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agricultural Water Management, 2016, 165, 211-229.	2.4	72
31	Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sensing, 2015, 7, 2373-2400.	1.8	61
32	Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agricultural Water Management, 2015, 152, 222-232.	2.4	45
33	Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosystems Engineering, 2015, 132, 1-18.	1.9	47
34	Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 2015, 152, 57-71.	2.4	73
35	Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agricultural Water Management, 2015, 159, 239-254.	2.4	81
36	Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus) Tj ETQq	0 0 0 rgBT 2.5	/Overlock 10 ⁻ 30

Products, 2015, 77, 204-217.

Paula Paredes

#	Article	IF	CITATIONS
37	Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agricultural Water Management, 2015, 147, 43-53.	2.4	89
38	Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agricultural Water Management, 2014, 135, 27-39.	2.4	109
39	Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. Journal of Hydrology, 2014, 519, 2067-2080.	2.3	98
40	Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management, 2014, 144, 81-97.	2.4	99
41	The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain. Irrigation Science, 2013, 31, 1303-1316.	1.3	118
42	Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosystems Engineering, 2013, 115, 291-310.	1.9	60
43	Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agricultural Water Management, 2013, 126, 85-96.	2.4	63
44	Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agricultural Water Management, 2013, 117, 93-105.	2.4	106
45	ESTIMATION OF THE PAPAYA CROP COEFFICIENTS FOR IMPROVING IRRIGATION WATER MANAGEMENT IN SOUTH OF HAVANA. Acta Horticulturae, 2012, , 179-186.	0.1	3
46	Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agricultural Water Management, 2012, 103, 8-24.	2.4	147
47	Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agricultural Water Management, 2012, 103, 62-77.	2.4	93
48	The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrigation Science, 2012, 30, 115-126.	1.3	79
49	THE DUAL CROP COEFFICIENT APPROACH: TESTING THE SIMDUALKC MODEL WITH PEACH ORCHARD EVAPOTRANSPIRATION EDDY COVARIANCE MEASUREMENTS. Acta Horticulturae, 2011, , 181-188.	0.1	2
50	DETERMINATION OF CROP COEFFICIENTS FOR HORTICULTURAL CROPS IN CUBA THROUGH FIELD EXPERIMENTS AND WATER BALANCE SIMULATION. Acta Horticulturae, 2011, , 475-482.	0.1	3
51	Relating energy performance and water productivity of sprinkler irrigated maize, wheat and sunflower under limited water availability. Biosystems Engineering, 2010, 106, 195-204.	1.9	21
52	Simulation of the soil water balance of wheat using daily weather forecast messages to estimate the reference evapotranspiration. Hydrology and Earth System Sciences, 2009, 13, 1045-1059.	1.9	47
53	Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 2009, 96, 723-735.	2.4	86
54	Cotton irrigation scheduling in central Asia: model calibration and validation with consideration of groundwater contribution. Irrigation and Drainage, 2008, 57, 516-532.	0.8	43

#	Article	IF	CITATIONS
55	SIMDualKc, A Software Tool for Water Balance Simulation Based on Dual Crop Coefficient. , 0, , .		0