Sridevi Chigurupati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vasculoprotective Effects of Pomegranate (Punica granatum L.). Frontiers in Pharmacology, 2018, 9, 544.	1.6	96
2	Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 2017, 74, 179-186.	2.0	80
3	Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors inÂvitro: Structure-activity relationship, molecular docking, and kinetic studies. European Journal of Medicinal Chemistry, 2019, 183, 111677.	2.6	78
4	Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017, 72, 248-255.	2.0	75
5	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	2.0	75
6	New Hybrid Hydrazinyl Thiazole Substituted Chromones: As Potential α-Amylase Inhibitors and Radical (DPPH & ABTS) Scavengers. Scientific Reports, 2017, 7, 16980.	1.6	70
7	Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chemistry, 2016, 67, 9-17.	2.0	61
8	Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules, 2021, 26, 6570.	1.7	60
9	Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 2020, 94, 103195.	2.0	51
10	Targeting Probiotics in Rheumatoid Arthritis. Nutrients, 2021, 13, 3376.	1.7	51
11	Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 2018, 80, 36-42.	2.0	50
12	A step ahead of PPARÎ ³ full agonists to PPARÎ ³ partial agonists: Therapeutic perspectives in the management of diabetic insulin resistance. European Journal of Pharmacology, 2015, 755, 50-57.	1.7	49
13	2Ê1-Aryl and 4Ê1-arylidene substituted pyrazolones: As potential α-amylase inhibitors. European Journal of Medicinal Chemistry, 2018, 159, 47-58.	2.6	48
14	2-Aryl benzimidazoles: Synthesis, InÂvitro α-amylase inhibitory activity, and molecular docking study. European Journal of Medicinal Chemistry, 2018, 150, 248-260.	2.6	47
15	A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorganic Chemistry, 2021, 114, 105073.	2.0	46
16	Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 2020, 96, 103581.	2.0	42
17	Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorganic and Medicinal Chemistry, 2020, 28, 115467.	1.4	42
18	Chalcones and bis-chalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. Bioorganic Chemistry, 2018, 79, 179-189.	2.0	39

#	Article	IF	CITATIONS
19	Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies. Bioorganic Chemistry, 2021, 106, 104489.	2.0	39
20	Flurbiprofen derivatives as novel α-amylase inhibitors: Biology-oriented drug synthesis (BIODS), in vitro, and in silico evaluation. Bioorganic Chemistry, 2018, 81, 157-167.	2.0	38
21	Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.	2.6	37
22	New Hybrid Scaffolds based on Hydrazinyl Thiazole Substituted Coumarin; As Novel Leads of Dual Potential; In Vitro α-Amylase Inhibitory and Antioxidant (DPPH and ABTS Radical Scavenging) Activities. Medicinal Chemistry, 2019, 15, 87-101.	0.7	37
23	Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorganic Chemistry, 2020, 94, 103410.	2.0	34
24	Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorganic Chemistry, 2017, 73, 121-127.	2.0	33
25	Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 2021, 108, 104638.	2.0	32
26	Synthesis of azomethines derived from cinnamaldehyde and vanillin: in vitro aetylcholinesterase inhibitory, antioxidant and insilico molecular docking studies. Medicinal Chemistry Research, 2018, 27, 807-816.	1.1	31
27	Synthesis and biological evaluation of some novel pyrazolines. Indian Journal of Pharmaceutical Sciences, 2007, 69, 470.	1.0	30
28	Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorganic Chemistry, 2020, 101, 103979.	2.0	29
29	Decrypting the potential role of α-lipoic acid in Alzheimer's disease. Life Sciences, 2021, 284, 119899.	2.0	28
30	Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. International Journal of Biological Macromolecules, 2020, 154, 217-232.	3.6	26
31	Synthesis of Some Phenylpyrazolo Benzimidazolo Quinoxaline Derivatives as Potent Antihistaminic Agents. E-Journal of Chemistry, 2010, 7, 234-238.	0.4	24
32	Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorganic Chemistry, 2017, 75, 78-85.	2.0	24
33	Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chemistry, 2020, 14, 43.	1.6	24
34	Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl(phenyl)methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Bioorganic Chemistry, 2020, 104, 104238.	2.0	23
35	Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study. International Journal of Biological Macromolecules, 2021, 190, 301-318.	3.6	23
36	Synthesis and biological evaluation of some novel quinazolones. Indian Journal of Pharmaceutical Sciences, 2007, 69, 476.	1.0	23

#	Article	IF	CITATIONS
37	Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants' Diaspora. Molecules, 2020, 25, 5457.	1.7	22
38	Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents; Synthesis, <i>In Vitro</i> α-Amylase Inhibitory Activity, Structure–Activity Relationship, and <i>In Silico</i> Studies. ACS Omega, 2021, 6, 2264-2275.	1.6	22
39	Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. European Journal of Medicinal Chemistry, 2016, 124, 992-1003.	2.6	21
40	Antibacterial and Antibiofilm Activities of Nonpolar Extracts of <i> Allium stipitatum</i> Regel. against Multidrug Resistant Bacteria. BioMed Research International, 2018, 2018, 1-13.	0.9	19
41	Thiazole Based Carbohydrazide Derivatives as α-Amylase Inhibitor and Their Molecular Docking Study. Heteroatom Chemistry, 2019, 2019, 1-8.	0.4	19
42	Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of King Saud University - Science, 2021, 33, 101401.	1.6	19
43	Exploring the role of cathepsin in rheumatoid arthritis. Saudi Journal of Biological Sciences, 2022, 29, 402-410.	1.8	19
44	Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract from Qassim region, Saudi Arabia. Saudi Journal of Biological Sciences, 2022, 29, 854-859.	1.8	19
45	Bioactive 2-(Methyldithio)Pyridine-3-Carbonitrile from Persian Shallot (Allium stipitatum Regel.) Exerts Broad-Spectrum Antimicrobial Activity. Molecules, 2019, 24, 1003.	1.7	16
46	A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells. Scientifica, 2016, 2016, 1-6.	0.6	15
47	Ameliorative effect of metformin on cyclophosphamide-induced memory impairment in mice. European Review for Medical and Pharmacological Sciences, 2019, 23, 9660-9666.	0.5	15
48	Synthesis, Î \pm -amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Medicinal Chemistry Research, 2019, 28, 2010-2022.	1.1	14
49	Substituted Benzimidazole Analogues as Potential α-Amylase Inhibitors and Radical Scavengers. ACS Omega, 2021, 6, 22726-22739.	1.6	14
50	Elucidating the Neuroprotective Role of PPARs in Parkinson's Disease: A Neoteric and Prospective Target. International Journal of Molecular Sciences, 2021, 22, 10161.	1.8	14
51	Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arabian Journal of Chemistry, 2022, 15, 103651.	2.3	14
52	Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Archiv Der Pharmazie, 2022, 355, e2100481.	2.1	14
53	Designing New Vanillin Schiff Bases and their Antibacterial Studies. Journal of Medical and Bioengineering, 2015, 4, 363-366.	0.5	12
54	In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules, 2021, 26, 7509.	1.7	12

#	Article	IF	CITATIONS
55	Synthesis and antibacterial profile of novel azomethine derivatives of β-phenylacrolein moiety. Tropical Journal of Pharmaceutical Research, 2016, 15, 821.	0.2	11
56	Synthesis, α-amylase and α-glucosidase inhibition and molecular docking studies of indazole derivatives. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10730-10740.	2.0	11
57	Pharmacological and pharmacognostical valuation of Canna indica leaves extract by quantifying safety profile and neuroprotective potential. Saudi Journal of Biological Sciences, 2021, 28, 5579-5584.	1.8	10
58	Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Olea europaea L. Ethanolic leaves extract. Arabian Journal of Chemistry, 2021, 14, 103422.	2.3	10
59	The Glycemic Control Potential of Some Amaranthaceae Plants, with Particular Reference to In Vivo Antidiabetic Potential of Agathophora alopecuroides. Molecules, 2022, 27, 973.	1.7	9
60	Targeting natural products against SARS-CoV-2. Environmental Science and Pollution Research, 2022, 29, 42404-42432.	2.7	9
61	Synthesis and Pharmacological Evaluation of Some Phenylpyrazolo Indoquinoxaline Derivatives. E-Journal of Chemistry, 2011, 8, 924-930.	0.4	7
62	Dihydroquinazolin-4(1H)-one derivatives as novel and potential leads for diabetic management. Molecular Diversity, 2022, 26, 849-868.	2.1	7
63	Phytochemical composition, antioxidant and antidiabetic potential of methanolic extract from Corchorus olitorius Linn. grown in Saudi Arabia. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2020, 12, 71.	0.1	7
64	Green synthesis of pregabalinâ€stabilized gold nanoclusters and their applications in sensing and drug release. Archiv Der Pharmazie, 2022, , e2100426.	2.1	7
65	Exploring the focal role of LRRK2 kinase in Parkinson's disease. Environmental Science and Pollution Research, 2022, 29, 32368-32382.	2.7	7
66	Impact of Indazole Scaffold as Antibacterial and Antifungal Agent. Current Topics in Medicinal Chemistry, 2022, 22, 1152-1159.	1.0	7
67	Research advances on how metformin improves memory impairment in "chemobrain― Neural Regeneration Research, 2022, 17, 15.	1.6	6
68	QUANTITATIVE ESTIMATION AND ANTIMICROBIAL POTENTIAL OF ETHANOL EXTRACT OF DURIO ZIBETHINUS MURR. LEAVES. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 251.	0.3	5
69	Applications of Adductomics in Chemically Induced Adverse Outcomes and Major Emphasis on DNA Adductomics: A Pathbreaking Tool in Biomedical Research. International Journal of Molecular Sciences, 2021, 22, 10141.	1.8	5
70	Antidiabetic, antioxidant and <i>in silico</i> studies of bacterial endosymbiont inhabiting <i>Nephelium lappaceum</i> L. Analele UniversitÄfÈii Ovidius ConstanÈia: Seria Chimie, 2019, 30, 95-100.	0.2	5
71	Free fatty acid receptor 1: a ray of hope in the therapy of type 2 diabetes mellitus. Inflammopharmacology, 2021, 29, 1625-1639.	1.9	5
72	Factors Affecting the Incidence, Progression, and Severity of COVID-19 in Type 1 Diabetes Mellitus. BioMed Research International, 2021, 2021, 1-9.	0.9	5

#	Article	IF	CITATIONS
73	Natural and Synthetic Agents Targeting Reactive Carbonyl Species against Metabolic Syndrome. Molecules, 2022, 27, 1583.	1.7	5
74	SCREENING ANTIMICROBIAL POTENTIAL FOR MALAYSIAN ORIGINATED TAMARINDUS INDICA ETHANOLIC LEAVES EXTRACT. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 361.	0.3	4
75	Discovery of New N-hydrazinecarbothioamide Indazole Hybrids: As Potential Radical (ABTS and DPPH) Scavengers. Letters in Drug Design and Discovery, 2020, 17, 1177-1185.	0.4	4
76	Studying Newly Synthesized and Developed 4-Hydroxy-3-Methoxybenzaldehyde Schiff Bases by UV Spectrophotometry and High Performance Liquid Chromatography. Pharmaceutical Chemistry Journal, 2017, 50, 851-856.	0.3	3
77	Bacterial Endo-Symbiont Inhabiting Durio zibethinus leaves and their Antibacterial Potential. International Journal of Pharmtech Research, 2018, 11, 198-205.	0.1	3
78	Antimicrobial Exploration Between Counterpart Endosymbiont and Host Plant (Tamarindus indica) Tj ETQq0 0 0 r	gBT /Over	logk 10 Tf 50
79	Antimicrobial Evaluation and Synthesis of Some Phenylpyrazolo benzothiazolo quinoxaline Derivatives. E-Journal of Chemistry, 2009, 6, 866-870.	0.4	2
80	ANTICHOLINESTERASE ACTIVITY OF OCTA PEPTIDES RELATED TO HUMAN HISTATIN 8: IN-SILICO DRUG DESIGN AND IN-VITRO. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 115.	0.3	2
81	Deciphering the focal role of endostatin in Alzheimer's disease. Environmental Science and Pollution Research, 2021, 28, 61998-62011.	2.7	2
82	In vitro antioxidant and in vivo antidepressant activity of green synthesized azomethine derivatives of cinnamaldehyde. Indian Journal of Pharmacology, 2017, 49, 229.	0.4	2
83	Effects of nitric oxide modulators and antioxidants on endocrine and cellular markers of acute stress in rats. Biochemical and Biophysical Research Communications, 2022, 589, 234-239.	1.0	2
84	Syntheses, in vitro, and in silico studies of rhodanine-based schiff bases as potential \hat{l}_{\pm} -amylase inhibitors and radicals (DPPH and ABTS) scavengers. Molecular Diversity, 2023, 27, 767-791.	2.1	2
85	Elucidating the Neuroprotective Effect of Tecoma stans Leaf Extract in STZ-Induced Diabetic Neuropathy. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	2
86	PRETREATMENT VARIATIONS IN HAEMATOLOGICAL PARAMETERS OF BREAST CANCER PATIENTS. International Journal of Pharmacy and Pharmaceutical Sciences, 2018, 10, 157.	0.3	1
87	Unravelling the photoprotective effects of freshwater alga Nostoc commune Vaucher ex Bornet et Flahault against ultraviolet radiations. Environmental Science and Pollution Research, 2021, , 1.	2.7	1
88	Bacterial endosymbiont inhabiting <i>Leucaena leucocephala</i> leaves and their antioxidant and antidiabetic potential. Journal of Complementary and Integrative Medicine, 2021, 18, 319-325.	0.4	1
89	Fostering and promoting professionalism in undergraduate medical students. International Journal of Research in Pharmaceutical Sciences, 2020, 11, 1307-1314.	0.0	1
90	Exploring the relationship between the physico-chemical parameters and anti-tubercular activity of	1.1	0

quinoline-3-carboxylic acids: a QSAR approach. Medicinal Chemistry Research, 2015, 24, 744-752. 90

#	Article	IF	CITATIONS
91	DIABETIC NEPHROPATHY AN OBVIOUS COMPLICATION IN LONG TERM TYPE 1 DIABETES MELLITUS: A CASE STUDY. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 4.	0.3	0
92	A PROSPECTIVE CLINICALTRIAL OF AMLODIPINE IN COMPARISON TO PERINDOPRIL. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 268.	0.3	0
93	An appraisal of bacterial Endophytes. International Journal of Research in Pharmaceutical Sciences, 2020, 11, 1315-1322.	0.0	Ο
94	Anti-migraine activity of freeze-dried latex obtained from Calotropis gigantea Linn. Environmental Science and Pollution Research, 2022, 29, 27460-27478.	2.7	0
95	Investigation of Cochlospermum religiosum leaves for antidepressant and anxiolytic activities and its synergistic effect with imipramine and fluoxetine. Environmental Science and Pollution Research, 2022, 29, 27172.	2.7	Ο
96	Co-administration of imipramine and doxorubicin reduces the survival rate and body weight of mice. European Review for Medical and Pharmacological Sciences, 2020, 24, 12978-12982.	0.5	0