R MelÃ-cio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912807/publications.pdf

Version: 2024-02-01

257101 288905 2,313 192 24 40 h-index citations g-index papers 194 194 194 2073 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Space debris generation in GEO: Space materials testing and evaluation. Acta Astronautica, 2022, 192, 258-275.	1.7	13
2	Home Energy Forecast Performance Tool for Smart Living Services Suppliers under an Energy 4.0 and CPS Framework. Energies, 2022, 15, 957.	1.6	2
3	Analysis on the Isostatic Bipod Mounts for the HERA Mission LIDAR. Applied Sciences (Switzerland), 2022, 12, 3497.	1.3	5
4	Moving least-squares in finite strain analysis with tetrahedra support. Engineering Analysis With Boundary Elements, 2022, 139, 1-13.	2.0	1
5	Integrated WPT-PLC System Applied to UAV: Characterization of a Two-Coil Channel Considering Misalignment Scenarios. Electronics (Switzerland), 2022, 11, 1249.	1.8	1
6	Short-Term Consequences of Asteroid Impacts into the Ocean: A Portuguese Case Study. Universe, 2022, 8, 279.	0.9	1
7	Implementation of a Cryogenic Facility for Space Debris Analysis. Applied Sciences (Switzerland), 2021, 11, 948.	1.3	3
8	A Team Allocation Decision for Aircraft Fleet Maintenance. IOP Conference Series: Materials Science and Engineering, 2021, 1024, 012102.	0.3	1
9	Current Interactions Mitigation in 3-Phase PFC Modular Rectifier through Differential-Mode Choke Filter Boost Converter. Applied Sciences (Switzerland), 2021, 11, 1684.	1.3	2
10	Fractional-Order Colour Image Processing. Mathematics, 2021, 9, 457.	1.1	13
11	Machine Learning and Natural Language Processing for Prediction of Human Factors in Aviation Incident Reports. Aerospace, 2021, 8, 47.	1.1	31
12	A novel microgrid support management system based on stochastic mixed-integer linear programming. Energy, 2021, 223, 120030.	4.5	53
13	Assessing the Value of Demand Response in Microgrids. Sustainability, 2021, 13, 5848.	1.6	4
14	Planning of Aircraft Fleet Maintenance Teams. Aerospace, 2021, 8, 140.	1.1	4
15	Fractional Order Processing of Satellite Images. Applied Sciences (Switzerland), 2021, 11, 5288.	1.3	0
16	Hybrid Three-Phase Rectifiers with Active Power Factor Correction: A Systematic Review. Electronics (Switzerland), 2021, 10, 1520.	1.8	14
17	LIDAR altimeter conception for HERA spacecraft. Aircraft Engineering and Aerospace Technology, 2021, 93, 1018-1028.	0.7	5
18	Neural-Network Based Modeling of I/O Buffer Predriver under Power/Ground Supply Voltage Variations. Sensors, 2021, 21, 6074.	2.1	2

#	Article	IF	Citations
19	Hypothetical Apophis deep ocean impact—Energy analysis. Acta Astronautica, 2021, 188, 438-450.	1.7	4
20	Upgrading a Legacy Manufacturing Cell to IoT. Journal of Sensor and Actuator Networks, 2021, 10, 65.	2.3	3
21	Large Geographical Area Aerial Surveillance Systems Data Network Infrastructure Managed by Artificial Intelligence and Certified over Blockchain: A Review. Network, 2021, 1, 335-353.	1.5	1
22	Wind Power with Energy Storage Arbitrage in Day-ahead Market by a Stochastic MILP Approach. Logic Journal of the IGPL, 2020, 28, 570-582.	1.3	20
23	On-board implementation and experimental validation of collaborative transportation of loads with multiple UAVs. Aerospace Science and Technology, 2020, 107, 106284.	2.5	25
24	The Power System and Microgrid Protection—A Review. Applied Sciences (Switzerland), 2020, 10, 8271.	1.3	22
25	A wind turbine and its robust control using the CRONE method. Renewable Energy, 2020, 160, 483-497.	4.3	5
26	Comparison between Inflexible and Flexible Charging of Electric Vehiclesâ€"A Study from the Perspective of an Aggregator. Energies, 2020, 13, 5443.	1.6	5
27	Distributed Generation Control Using Modified PLL Based on Proportional-Resonant Controller. Applied Sciences (Switzerland), 2020, 10, 8891.	1.3	6
28	Omnidirectional WPT and Data Communication for Electric Air Vehicles: Feasibility Study. Energies, 2020, 13, 6480.	1.6	3
29	Wireless Networks for Traffic Light Control on Urban and Aerotropolis Roads. Journal of Sensor and Actuator Networks, 2020, 9, 26.	2.3	9
30	Bifurcation of equilibria for general case of gyrostat satellite on a circular orbit. Aerospace Science and Technology, 2020, 105, 106058.	2.5	6
31	System for space materials evaluation in LEO environment. Advances in Space Research, 2020, 66, 307-320.	1.2	20
32	Dust effect impact on PV in an aggregation with wind and thermal powers. Sustainable Energy, Grids and Networks, 2020, 22, 100359 .	2.3	3
33	Study of Electric Field Emissions in Wireless Energy Transfer. IFIP Advances in Information and Communication Technology, 2020, , 233-245.	0.5	1
34	Scenario Reduction for Stochastic Optimization Applied to Short-Term Trading of PV Power. IFIP Advances in Information and Communication Technology, 2020, , 246-255.	0.5	0
35	Implementation of a YBCO Superconducting ZFC-Magnetic Bearing Prototype. IEEE Transactions on Industry Applications, 2019, 55, 327-335.	3.3	1
36	Three-Phase Unidirectional Transformerless Hybrid Rectifier with Boost Converter., 2019,,.		1

#	Article	IF	CITATIONS
37	Robust Control of a Wind Turbine Using Third Generation CRONE Control., 2019, , .		4
38	Stochastic Management of Bidirectional Electric Vehicles: The Case of an Electric Vehicles Aggregator. , $2019, \ldots$		0
39	Auxiliary Digital Control Unit for Capacitor Banks. IFIP Advances in Information and Communication Technology, 2019, , 367-375.	0.5	0
40	Electric Vehicles Aggregation in Market Environment: A Stochastic Grid-to-Vehicle and Vehicle-to-Grid Management. IFIP Advances in Information and Communication Technology, 2019, , 343-352.	0.5	1
41	Modeling and Simulation of PV Panel Under Different Internal and Environmental Conditions with Non-constant Load. IFIP Advances in Information and Communication Technology, 2019, , 376-392.	0.5	2
42	Aggregation of Wind, Photovoltaic and Thermal Power with Demand Response. , 2019, , .		0
43	Aerostat Powered by PV Cells: Hot-Spot Effect. , 2019, , .		0
44	Frequency Tuning of the Resonant Wireless Energy Transfer System. , 2019, , .		4
45	Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk. Renewable Energy, 2019, 133, 692-702.	4.3	33
46	Stress, Pressure and Fatigue on Aircraft Maintenance Personal. International Review of Aerospace Engineering, 2019, 12, 35.	0.2	13
47	Electromagnetic Influence of WPT on Human's Health. Advances in Wireless Technologies and Telecommunication Book Series, 2019, , 141-161.	0.3	4
48	Offshore Wind System in the Way of Energy 4.0: Ride Through Fault Aided by Fractional PI Control and VRFB. Springer Proceedings in Mathematics and Statistics, 2019, , 85-106.	0.1	0
49	Efficiency Improvement in Wireless Power System. Advances in Wireless Technologies and Telecommunication Book Series, 2019, , 23-48.	0.3	1
50	Prototype of a Zero-Field-Cooled YBCO Bearing With Continuous Ring Permanent Magnets. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.1	6
51	Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements. Renewable Energy, 2018, 127, 398-411.	4.3	29
52	The Critic Liquid–Gas Phase Transition Between Liquid Nitrogen and YBCO HTS Bulks: From FEM Modeling to its Experimental Study for ZFC Levitation Devices. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-8.	1.1	2
53	Electromagnetic field generated by a wireless energy transfer system: comparison of simulation to measurement. Journal of Electromagnetic Waves and Applications, 2018, 32, 554-571.	1.0	6
54	Gyrostat Dynamics on a Circular Orbit: General Case of Equilibria Bifurcation and Analytical Expressions. , $2018, \ldots$		2

#	Article	IF	CITATIONS
55	Comparison of Offshore and Onshore Wind Systems with MPC Five-Level Converter under Energy 4.0. Electric Power Components and Systems, 2018, 46, 1399-1415.	1.0	4
56	Darrieus Wind Turbine Prototype Control Study. , 2018, , .		0
57	Ride through fault on the rectifier controller of an offshore wind system aided by VRFB. , 2018, , .		1
58	Aggregation Platform for Wind-PV-Thermal Technology in Electricity Market. , 2018, , .		3
59	Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis. Energy, 2018, 159, 961-976.	4.5	15
60	Wind-PV-Thermal Power Aggregator in Electricity Market. IFIP Advances in Information and Communication Technology, 2018, , 101-110.	0.5	1
61	Adaptive and predictive controllers applied to onshore wind energy conversion system. AIMS Energy, 2018, 6, 615-631.	1.1	2
62	Darrieus-type vertical axis rotary-wings with a new design approach grounded in double-multiple streamtube performance prediction model. AIMS Energy, 2018, 6, 673-694.	1.1	5
63	Optimization of Wind Power Producer Participation in Electricity Markets with Energy Storage in a Way of Energy 4.0. Advances in Intelligent Systems and Computing, 2018, , 91-101.	0.5	0
64	Wireless Battery Charger for EV with Circular or Planar Coils: Comparison. IFIP Advances in Information and Communication Technology, 2018, , 214-223.	0.5	1
65	Simulation and Experiment on Electric Field Emissions Generated by Wireless Energy Transfer. IFIP Advances in Information and Communication Technology, 2018, , 243-251.	0.5	2
66	Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market. Energy, 2017, 124, 310-320.	4.5	87
67	Services enabler architecture for smart grid and smart living services providers under industry 4.0. Energy and Buildings, 2017, 141, 16-27.	3.1	53
68	Experimental Setup and Efficiency Evaluation of Zero-Field-Cooled (ZFC) YBCO Magnetic Bearings. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	13
69	Stochastic Optimization for the Daily Joint Operation of Wind/PV and Energy Storage. IFIP Advances in Information and Communication Technology, 2017, , 277-286.	0.5	0
70	Solutions for detection of non-technical losses in the electricity grid: A review. Renewable and Sustainable Energy Reviews, 2017, 80, 1256-1268.	8.2	120
71	Electric vehicle battery charger controlled by magnetic core reactor to Wireless Power Transfer system. , 2017, , .		2
72	Optimal Scheduling of Joint Wind-Thermal Systems. Advances in Intelligent Systems and Computing, 2017, , 136-146.	0.5	2

#	Article	IF	Citations
73	Family Houses Energy Consumption Forecast Tools for Smart Grid Management. Lecture Notes in Electrical Engineering, 2017, , 691-699.	0.3	4
74	Crystalline Silicon PV Module Under Effect of Shading Simulation of the Hot-Spot Condition. IFIP Advances in Information and Communication Technology, 2017, , 479-487.	0.5	4
75	Single-Phase Wireless Power Transfer System Controlled by Magnetic Core Reactors at Transmitter and Receiver. IFIP Advances in Information and Communication Technology, 2017, , 419-428.	0.5	2
76	Self-scheduling of Wind-Thermal Systems Using a Stochastic MILP Approach. IFIP Advances in Information and Communication Technology, 2017, , 242-250.	0.5	0
77	Levitating Bearings Using Superconductor Technology Under Smart Systems Scope. IFIP Advances in Information and Communication Technology, 2017, , 390-397.	0.5	1
78	Stochastic optimization of coordinated wind-photovoltaic bids in electricity markets. , 2016, , .		0
79	Offshore Wind Energy System with DC Transmission Discrete Mass: Modeling and Simulation. Electric Power Components and Systems, 2016, 44, 2271-2284.	1.0	8
80	Wireless technologies for controlling a traffic lights prototype. , 2016, , .		2
81	Study on electromagnetic emissions from wireless energy transfer. , 2016, , .		7
82	Conception of a YBCO superconducting zfc-magnetic bearing virtual prototype. , 2016, , .		5
83	Wind energy conversion system under a supervisor deterministic finite state machine. , 2016, , .		1
84	Bidding Decision of Wind-thermal GenCo in Day-ahead Market. Energy Procedia, 2016, 106, 87-96.	1.8	8
85	Improving magnetic coupling for battery charging through 3D magnetic flux. , 2016, , .		2
86	Bidding and Optimization Strategies for Wind-PV Systems in Electricity Markets Assisted by CPS. Energy Procedia, 2016, 106, 111-121.	1.8	36
87	Load Profile Analysis Tool for Electrical Appliances in Households Assisted by CPS. Energy Procedia, 2016, 106, 215-224.	1.8	7
88	Viability of a frictionless bearing with permanent magnets and HTS bulks. , 2016, , .		11
89	Electromagnetic Interference Impact of Wireless Power Transfer System on Data Wireless Channel. IFIP Advances in Information and Communication Technology, 2016, , 293-301.	0.5	11
90	Control and Supervision of Wind Energy Conversion Systems. IFIP Advances in Information and Communication Technology, 2016, , 353-368.	0.5	2

#	Article	IF	Citations
91	Offshore Wind Energy Conversion System Connected to the Electric Grid: Modeling and Simulation. IFIP Advances in Information and Communication Technology, 2016, , 387-403.	0.5	O
92	Optimal Wind Bidding Strategies in Day-Ahead Markets. IFIP Advances in Information and Communication Technology, 2016, , 475-484.	0.5	2
93	Optimal Bidding Strategies of Wind-Thermal Power Producers. IFIP Advances in Information and Communication Technology, 2016, , 494-503.	0.5	2
94	Classification of new electricity customers based on surveys and smart metering data. Energy, 2016, 107, 804-817.	4.5	103
95	Three-phase magnetic field system for wireless energy transfer. , 2016, , .		5
96	Bidding strategy of wind-thermal energy producers. Renewable Energy, 2016, 99, 673-681.	4.3	44
97	HVDC Power transmission simulation for offshore wind system with three-level converter. , $2016,$, .		0
98	Prediction of events in the smart grid: Interruptions in distribution transformers. , 2016, , .		5
99	Wireless power transfer impact on data channel. , 2016, , .		5
100	Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter. Renewable Energy, 2016, 89, 339-350.	4.3	14
101	Simulation by discrete mass modeling of offshore wind turbine system with DC link. International Journal of Marine Energy, 2016, 14, 80-100.	1.8	6
102	A fuzzy clustering approach to a demand response model. International Journal of Electrical Power and Energy Systems, 2016, 81, 184-192.	3.3	22
103	Study of the Electromagnetic Interference Generated by Wireless Power Transfer Systems. International Review of Electrical Engineering, 2016, 11, 526.	0.1	9
104	Three-Phase Magnetic Field Tested in Wireless Power Transfer System. International Review of Electrical Engineering, 2016, 11, 586.	0.1	3
105	Wind energy conversion system control using distinct controllers for different operating regions. , 2015, , .		5
106	Simulation of OWES with five-level converter linked to the grid: Harmonic assessment., 2015,,.		3
107	On Wind Turbine Model Predictive Pitch Control: An Event-Based Simulation Approach. Lecture Notes in Electrical Engineering, 2015, , 91-100.	0.3	2
108	Innovative design on technology of urban Darrieus VAWT: Field tests., 2015,,.		0

#	Article	IF	Citations
109	Poly-Si PV system grid connected and fuzzy controlled. , 2015, , .		1
110	Offer strategy for a wind power producer in day-ahead market. , 2015, , .		0
111	Performance assessment of a wind energy conversion system using a hierarchical controller structure. Energy Conversion and Management, 2015, 93, 40-48.	4.4	22
112	PV systems linked to the grid: Parameter identification with a heuristic procedure. Sustainable Energy Technologies and Assessments, 2015, 10, 29-39.	1.7	10
113	Self-scheduling and bidding strategies of thermal units with stochastic emission constraints. Energy Conversion and Management, 2015, 89, 975-984.	4.4	34
114	Consumer energy management system with integration of smart meters. Energy Reports, 2015, 1, 22-29.	2.5	62
115	Simulation of a rectifier malfunction on a offshore wind system with HVDC transmission. , 2015, , .		0
116	Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: Smart grid context tool. Energy Conversion and Management, 2015, 97, 140-153.	4.4	13
117	Supervisory control of a variable speed wind turbine with doubly fed induction generator. Energy Reports, 2015, 1, 89-95.	2.5	19
118	Simulation of a-Si PV System Linked to the Grid by DC Boost and Three-Level Inverter Under Cloud Scope. IFIP Advances in Information and Communication Technology, 2015, , 423-430.	0.5	2
119	Integration of Evora-InovGrid smartmeters in a consumer's SCADA system. , 2015, , .		0
120	Electricity demand profile prediction based on household characteristics., 2015,,.		21
121	On a self-start Darrieus wind turbine: Blade design and field tests. Renewable and Sustainable Energy Reviews, 2015, 52, 508-522.	8.2	48
122	Simulation of Offshore Wind System with Three-Level Converters: HVDC Power Transmission in Cloud Scope. IFIP Advances in Information and Communication Technology, 2015, , 440-447.	0.5	1
123	Offering Strategies of Wind Power Producers in a Day-Ahead Electricity Market. IFIP Advances in Information and Communication Technology, 2015, , 385-394.	0.5	0
124	Three-level Converter in Offshore Wind Energy Systems: New Strategy for Unbalancing in Capacitors Voltage. Procedia Technology, 2014, 17, 452-460.	1.1	0
125	Wireless Monitoring of Urban Wind Turbines by ZigBee Protocol: Support Application Software and Sensor Modules. Procedia Technology, 2014, 17, 461-470.	1.1	5
126	Fuzzy, integer and fractional-order control: Application on a wind turbine benchmark model. , 2014, , .		7

#	Article	IF	CITATIONS
127	Effect of Shading on Series Solar Modules: Simulation and Experimental Results. Procedia Technology, 2014, 17, 295-302.	1.1	31
128	Fuzzy Subtractive Clustering Technique Applied to Demand Response in a Smart Grid Scope. Procedia Technology, 2014, 17, 478-486.	1.1	13
129	Simulation of offshore wind system with two-level converters: HVDC power transmission., 2014,,.		3
130	Simulation of a-Si PV system linked to the grid by DC-DC boost and two-level converter. , 2014, , .		3
131	Optimal Coordination on Wind-Pumped-Hydro Operation. Procedia Technology, 2014, 17, 445-451.	1.1	15
132	Fractional order control on a wind turbine benchmark. , 2014, , .		4
133	Modeling and Simulation of Wind Shear and Tower Shadow on Wind Turbines. Procedia Technology, 2014, 17, 471-477.	1.1	14
134	Stochastic Emission Constraints on Unit Commitment. Procedia Technology, 2014, 17, 437-444.	1.1	2
135	Performance Assessment of a Wind Turbine Using Benchmark Model: Fuzzy Controllers and Discrete Adaptive LQG. Procedia Technology, 2014, 17, 487-494.	1.1	11
136	PV System with Maximum Power Point Tracking: Modeling, Simulation and Experimental Results. Procedia Technology, 2014, 17, 495-501.	1.1	3
137	Fifth harmonic and sag impact on PMSG wind turbines with a balancing new strategy for capacitor voltages. Energy Conversion and Management, 2014, 79, 721-730.	4.4	28
138	Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control. Energy, 2014, 69, 357-369.	4.5	34
139	A simulation of integrated photovoltaic conversion into electric grid. Solar Energy, 2014, 110, 578-594.	2.9	12
140	PV system modeling by five parameters and in situ test. , 2014, , .		9
141	Spinning reserve and emission unit commitment through stochastic optimization. , 2014, , .		1
142	Fuzzy clustering applied to a demand response model in a smart grid contingency scenario., 2014,,.		3
143	Layered Smart Grid architecture approach and field tests by ZigBee technology. Energy Conversion and Management, 2014, 88, 49-59.	4.4	42
144	Stochastic Unit Commitment Problem with Security and Emissions Constraints. IFIP Advances in Information and Communication Technology, 2014, , 388-397.	0.5	1

#	Article	IF	CITATIONS
145	Optimal Operation Planning of Wind-Hydro Power Systems Using a MILP Approach. IFIP Advances in Information and Communication Technology, 2014, , 277-286.	0.5	O
146	Amorphous Solar Modules Simulation and Experimental Results: Effect of Shading. IFIP Advances in Information and Communication Technology, 2014, , 315-323.	0.5	1
147	Simulation of Offshore Wind Turbine Link to the Electric Grid through a Four-Level Converter. IFIP Advances in Information and Communication Technology, 2014, , 324-331.	0.5	0
148	Application of a discrete adaptive LQG and fuzzy control design to a wind turbine benchmark model. , 2013, , .		7
149	Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid. Energy, 2013, 49, 306-315.	4.5	160
150	Demand Response Analysis in Smart Grids Using Fuzzy Clustering Model. IFIP Advances in Information and Communication Technology, 2013, , 403-412.	0.5	2
151	Darrieus Wind Turbine Performance Prediction: Computational Modeling. IFIP Advances in Information and Communication Technology, 2013, , 382-391.	0.5	5
152	Schedule of Thermal Units with Emissions in a Spot Electricity Market. IFIP Advances in Information and Communication Technology, 2013, , 361-370.	0.5	3
153	Simulation and experimental results for a photovoltaic system formed by polycrystalline solar modules., 2012,,.		2
154	ZigBee wireless area network for home automation and energy management: Field trials and installation approaches. , 2012, , .		10
155	Zigbee devices for distributed generation management: field tests and installation approaches. , 2012, , .		2
156	ZigBee standard in the creation of wireless networks for advanced metering infrastructures., 2012,,.		16
157	Offshore wind turbines: Simulation of multibody drive train, interaction with fractional-order control and full-power converter., 2012,,.		1
158	Harmonic behavior of variable-speed wind turbines during a control fault., 2011,,.		1
159	Influence of a converter control malfunction on the harmonic behavior of wind turbines with permanent magnet generator. , $2011, \ldots$		2
160	Self-start evaluation in lift-type vertical axis wind turbines: Methodology and computational tool applied to asymmetrical airfoils. , 2011, , .		7
161	Computer simulations of a converter control malfunction on PMSG-based wind turbines., 2011,,.		0
162	Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems. Energy, 2011, 36, 520-529.	4.5	59

#	Article	IF	Citations
163	Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction. Applied Energy, 2011, 88, 1322-1330.	5.1	32
164	Wind turbines equipped with fractionalâ€order controllers: Stress on the mechanical drive train due to a converter control malfunction. Wind Energy, 2011, 14, 13-25.	1.9	14
165	New blade profile for Darrieus wind turbines capable to self-start. , 2011, , .		15
166	Harmonic assessment of variable-speed wind turbines considering a converter control malfunction. IET Renewable Power Generation, 2010, 4, 139.	1.7	43
167	Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology. Energy Conversion and Management, 2010, 51, 1250-1258.	4.4	87
168	Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation. Renewable Energy, 2010, 35, 2165-2174.	4.3	69
169	A Pitch Control Malfunction Analysis for Wind Turbines with Permanent Magnet Synchronous Generator and Full-power Converters: Proportional Integral Versus Fractional-order Controllers. Electric Power Components and Systems, 2010, 38, 387-406.	1.0	27
170	Fractional-order control and simulation of wind turbines with full-power converters. , 2010, , .		8
171	Wind energy systems with power-electronic converters and fractional-order controllers. , 2010, , .		3
172	Simulation of wind power generation with fractional controllers: Harmonics analysis. , 2010, , .		0
173	Power converter topologies and fractional-order controllers: Wind energy applications. , 2010, , .		3
174	Modelling and Simulation of a Wind Energy System with Fractional Controllers. Renewable Energy and Power Quality Journal, 2010, 1, 153-158.	0.2	2
175	Electrical grid integration and power quality studies of a variable-speed wind energy conversion system., 2009,,.		6
176	Modeling and Simulation of Wind Energy Systems with Matrix and Multilevel Power Converters. IEEE Latin America Transactions, 2009, 7, 78-84.	1.2	34
177	Dynamic stability of wind turbines with permanent magnet machines and power-electronic converters., 2009,,.		3
178	Two-level and multilevel converters for wind energy systems: A comparative study. , 2008, , .		16
179	Simulation of wind power generation with matrix and multi-level converters: Power quality analysis. , 2008, , .		2
180	Modeling and simulation of a wind energy system: Matrix versus multilevel converters. , 2008, , .		9

R MelÃcio

#	Article	IF	CITATIONS
181	Wind energy systems and power quality: matrix versus two-level converters. Renewable Energy and Power Quality Journal, 2008, 1, 419-424.	0.2	8
182	Simulaci \tilde{A}^3 n de Convertidores de Potencia en Sistemas $\tilde{E}\tilde{A}^3$ licos. Informacion Tecnologica (discontinued), 2007, 18, .	0.1	7
183	Self-start performance evaluation in Darrieus-type vertical axis wind turbines: Methodology and computational tool applied to symmetrical airfoils. Renewable Energy and Power Quality Journal, 0, , 250-255.	0.2	16
184	Simulation of a solar cell considering single-diode equivalent circuit mode. Renewable Energy and Power Quality Journal, 0, , 369-373.	0.2	64
185	Vertical Axis Wind Turbine Performance Prediction: An Approach to the Double Multiple Streamtube Model. Renewable Energy and Power Quality Journal, 0, , 633-636.	0.2	6
186	Energy Household Forecast with ANN for Demand Response and Demand Side Management. Renewable Energy and Power Quality Journal, 0, , 1016-1019.	0.2	1
187	Electromagnetic Interference from a Wireless Power Transfer System: Experimental Results. Renewable Energy and Power Quality Journal, 0, , 1020-1024.	0.2	6
188	Vanadium Redox Flow Battery Storage System Linked to the Electric Grid. Renewable Energy and Power Quality Journal, 0, , 1025-1036.	0.2	15
189	Traffic Lights Control Prototype Using Wireless Technologies. Renewable Energy and Power Quality Journal, 0, , 1031-1036.	0.2	6
190	Modelling, Iterative Procedure and Simulation Results for a Monocrystalline Solar Cell. Renewable Energy and Power Quality Journal, 0, , 541-544.	0.2	0
191	Wireless Energy Transfer with Three-Phase Magnetic Field System: Experimental Results. Renewable Energy and Power Quality Journal, 0, , 1037-1041.	0.2	4
192	Fractional Control of an Offshore Wind System. SSRN Electronic Journal, 0, , .	0.4	1