Philip M Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912574/publications.pdf

Version: 2024-02-01

143 papers 15,560 citations

23567 58 h-index 17105 122 g-index

170 all docs

170 docs citations

170 times ranked

15807 citing authors

#	Article	IF	CITATIONS
1	CD45: a niche marker for allotransplantation. Blood, 2022, 139, 1614-1616.	1.4	1
2	Anionic membrane phospholipids: A New Class of Chemokineâ€Binding Site Important for both Apoptotic Cell Clearance and Antibiotic Activity by Chemokines. FASEB Journal, 2022, 36, .	0.5	0
3	The NF-ÎB regulator Bcl-3 restricts terminal differentiation and promotes memory cell formation of CD8+ T cells during viral infection. PLoS Pathogens, 2021, 17, e1009249.	4.7	7
4	TREC Screening for WHIM Syndrome. Journal of Clinical Immunology, 2021, 41, 621-628.	3.8	4
5	Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. Journal of Biological Chemistry, 2021, 296, 100373.	3.4	O
6	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	12.6	84
7	Bclâ€3 suppresses differentiation of RORγt ⁺ regulatory T cells. Immunology and Cell Biology, 2021, 99, 586-595.	2.3	4
8	Leukocyte chemotactic receptor Fpr1 protects against agingâ€related posterior subcapsular cataract formation. FASEB Journal, 2021, 35, e21315.	0.5	1
9	Obituary for Prof. Dr. Ulrich Siebenlist. Biomedicines, 2021, 9, 244.	3.2	O
10	Ulrich Siebenlist (1951–2020). Immunity, 2021, 54, 391-392.	14.3	0
10	Ulrich Siebenlist (1951–2020). Immunity, 2021, 54, 391-392. Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335.	14.3	4
			O 4 7
11	Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335. Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific	6.8	4
11 12	Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335. Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123. <i>SASH3</i> variants cause a novel form of X-linked combined immunodeficiency with immune	6.8 3.3	7
11 12 13	Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335. Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123. <i>SASH3</i> Variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood, 2021, 138, 1019-1033. Chemokines act as phosphatidylserine-bound "find-me―signals in apoptotic cell clearance. PLoS	6.8 3.3	7 28
11 12 13	Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335. Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123. <i>SASH3</i> Variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood, 2021, 138, 1019-1033. Chemokines act as phosphatidylserine-bound "find-me―signals in apoptotic cell clearance. PLoS Biology, 2021, 19, e3001259. Hematologic disorder–associated ⟨i⟩ Cxcr4 /i> gain-of-function mutation leads to uncontrolled	6.8 3.3 1.4 5.6	4 7 28 16
11 12 13 14	Protean Regulation of Leukocyte Function by Nuclear Lamins. Trends in Immunology, 2021, 42, 323-335. Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123. <i>>SASH3</i> variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood, 2021, 138, 1019-1033. Chemokines act as phosphatidylserine-bound â€æfind-meâ€-signals in apoptotic cell clearance. PLoS Biology, 2021, 19, e3001259. Hematologic disorder–associated ⟨i⟩Cxcr4 pain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood, 2021, 137, 3050-3063. Alterations in the spatiotemporal expression of the chemokine receptor CXCR4 in endothelial cells	6.8 3.3 1.4 5.6	4 7 28 16

#	Article	IF	Citations
19	Chromoanasynthesis as a cause of Jacobsen syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2533-2539.	1.2	8
20	Mouse Cytomegalovirus Differentially Exploits Cell Surface Glycosaminoglycans in a Cell Type-Dependent and MCK-2-Independent Manner. Viruses, 2020, 12, 31.	3.3	5
21	A Critical Role of Formyl Peptide Receptors in Host Defense against <i>Escherichia coli</i> Journal of Immunology, 2020, 204, 2464-2473.	0.8	17
22	Chemokine Regulation During Epidemic Coronavirus Infection. Frontiers in Pharmacology, 2020, 11, 600369.	3. 5	15
23	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	6.0	131
24	Editorial: Atypical Functions of Leukocyte Chemoattractant Receptors. Frontiers in Immunology, 2020, 11, 596902.	4.8	0
25	Chemokines and Chemokine Receptors. , 2019, , 157-170.e1.		5
26	WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. Journal of Clinical Immunology, 2019, 39, 532-556.	3.8	59
27	Case Report: Ocular toxoplasmosis in a WHIM syndrome immunodeficiency patient. F1000Research, 2019, 8, 2.	1.6	5
28	Abnormal Newborn Screen in a WHIM Syndrome Infant. Journal of Clinical Immunology, 2019, 39, 839-841.	3.8	7
29	Low-Level Parasite Persistence Drives Vasculitis and Myositis in Skeletal Muscle of Mice Chronically Infected with Trypanosoma cruzi. Infection and Immunity, 2019, 87, .	2.2	13
30	Hematopoietic chimerism and donor-specific skin allograft tolerance after non-genotoxic CD117 antibody-drug-conjugate conditioning in MHC-mismatched allotransplantation. Nature Communications, 2019, 10, 616.	12.8	36
31	IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. ELife, 2019, 8, .	6.0	14
32	Adaptive Immunodeficiency in WHIM Syndrome. International Journal of Molecular Sciences, 2019, 20, 3.	4.1	47
33	WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunological Reviews, 2019, 287, 91-102.	6.0	43
34	Plerixafor for the Treatment of WHIM Syndrome. New England Journal of Medicine, 2019, 380, 163-170.	27.0	74
35	Low-level Cxcr4-haploinsufficient HSC engraftment is sufficient to correct leukopenia in WHIM syndrome mice. JCl Insight, 2019, 4, .	5.0	4
36	Case Report: Ocular toxoplasmosis in a WHIM syndrome immunodeficiency patient. F1000Research, 2019, 8, 2.	1.6	7

#	Article	IF	Citations
37	Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine, 2018, 109, 2-10.	3.2	46
38	Mechanisms of Sustained Neutrophilia in Patient WHIM-09, Cured of WHIM Syndrome by Chromothripsis. Journal of Clinical Immunology, 2018, 38, 77-87.	3.8	7
39	Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. MSphere, 2018, 3, .	2.9	75
40	Chemokine Subversion by Human Herpesviruses. Journal of Innate Immunity, 2018, 10, 465-478.	3.8	25
41	Autoimmunity and theÂParadox of Chagas Disease. , 2018, , 139-147.		1
42	Cxcr4-haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model. Journal of Clinical Investigation, 2018, 128, 3312-3318.	8.2	12
43	Two glycosaminoglycan-binding domains of the mouse cytomegalovirus-encoded chemokine MCK-2 are critical for oligomerization of the full-length protein. Journal of Biological Chemistry, 2017, 292, 9613-9626.	3.4	6
44	Biochemical and biophysical characterization of cytokine-like protein 1 (CYTL1). Cytokine, 2017, 96, 238-246.	3.2	7
45	Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opinion on Orphan Drugs, 2017, 5, 813-825.	0.8	31
46	Chemokines encoded by herpesviruses. Journal of Leukocyte Biology, 2017, 102, 1199-1217.	3.3	23
47	WHIM Syndrome Caused by Waldenström's Macroglobulinemia-Associated Mutation CXCR4 L329fs. Journal of Clinical Immunology, 2016, 36, 397-405.	3.8	25
48	CXCR1-mediated neutrophil degranulation and fungal killing promote <i>Candida</i> clearance and host survival. Science Translational Medicine, 2016, 8, 322ra10.	12.4	71
49	Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice. Infection and Immunity, 2016, 84, 1123-1136.	2.2	14
50	The Macrophage-depleting Agent Clodronate Promotes Durable Hematopoietic Chimerism and Donor-specific Skin Allograft Tolerance in Mice. Scientific Reports, 2016, 6, 22143.	3.3	35
51	CXCR4 antagonist AMD3100 redistributes leukocytes from primary immune organs to secondary immune organs, lung, and blood in mice. European Journal of Immunology, 2015, 45, 1855-1867.	2.9	64
52	Viral Chemokine Receptors. Frontiers in Immunology, 2015, 6, 281.	4.8	4
53	Characterization of chemokine and chemokine receptor expression during Pneumocystis infection in healthy and immunodeficient mice. Microbes and Infection, 2015, 17, 638-650.	1.9	7
54	Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovascular Research, 2015, 106, 478-487.	3.8	27

#	Article	IF	CITATIONS
55	An atypical addition to the chemokine receptor nomenclature: <scp>IUPHAR</scp> Review 15. British Journal of Pharmacology, 2015, 172, 3945-3949.	5.4	43
56	Chromothriptic Cure of WHIM Syndrome. Cell, 2015, 160, 686-699.	28.9	150
57	Pre-treatment of allogeneic bone marrow recipients with the CXCR4 antagonist AMD3100 transiently enhances hematopoietic chimerism without promoting donor-specific skin allograft tolerance. Transplant Immunology, 2015, 33, 125-129.	1.2	4
58	Chromothriptic cure of WHIM syndrome: Implications for bone marrow transplantation. Rare Diseases (Austin, Tex), 2015, 3, e1073430.	1.8	15
59	Neuronal Cx3cr1 Deficiency Protects against Amyloid \hat{l}^2 -Induced Neurotoxicity. PLoS ONE, 2015, 10, e0127730.	2.5	26
60	A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood, 2014, 123, 2308-2316.	1.4	117
61	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	16.0	735
62	Regulation of Motor Function and Behavior by Atypical Chemokine Receptor 1. Behavior Genetics, 2014, 44, 498-515.	2.1	14
63	New nomenclature for atypical chemokine receptors. Nature Immunology, 2014, 15, 207-208.	14.5	176
64	Regulation of Atherogenesis by Chemokines and Chemokine Receptors. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 1-14.	2.3	34
65	A Divergent Variant of the Eleventh Human Polyomavirus Species, Saint Louis Polyomavirus. Genome Announcements, $2013,1,.$	0.8	18
66	Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovascular Research, 2013, 97, 580-588.	3.8	33
67	Chemokines and chemokine receptors. , 2013, , 136-148.		3
68	Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis. PLoS Pathogens, 2012, 8, e1002865.	4.7	102
69	The Leukocyte Chemotactic Receptor FPR1 Is Functionally Expressed on Human Lens Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 40779-40792.	3.4	12
70	IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model of Trypanosoma cruzilnfection. Journal of Immunology, 2012, 188, 649-660.	0.8	83
71	Complete Genome Sequence of a Tenth Human Polyomavirus. Journal of Virology, 2012, 86, 10887-10887.	3.4	113
72	Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Scientific Reports, 2012, 2, 786.	3.3	109

#	Article	IF	CITATIONS
73	WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood, 2012, 120, 181-189.	1.4	68
74	Unexpected developments in immune organs in WHIM syndrome. Blood, 2012, 119, 5610-5612.	1.4	4
75	The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood, 2011, 118, 4957-4962.	1.4	136
76	AMD3100 is a potent antagonist at CXCR4 ^{R334X} , a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. Journal of Cellular and Molecular Medicine, 2011, 15, 2071-2081.	3.6	56
77	Regulation of Atherogenesis by Chemokine Receptor CCR6. Trends in Cardiovascular Medicine, 2011, 21, 140-144.	4.9	16
78	Chemokine control of West Nile virus infection. Experimental Cell Research, 2011, 317, 569-574.	2.6	62
79	Reduced Fear Memory and Anxiety-like Behavior in Mice Lacking Formylpeptide Receptor 1. Behavior Genetics, 2011, 41, 724-733.	2.1	21
80	Genetic Deletion of Chemokine Receptor Ccr6 Decreases Atherogenesis in <i>ApoE</i> -Deficient Mice. Circulation Research, 2011, 109, 374-381.	4.5	48
81	Chemokine Receptor Ccr2 Is Critical for Monocyte Accumulation and Survival in West Nile Virus Encephalitis. Journal of Immunology, 2011, 186, 471-478.	0.8	139
82	Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood, 2010, 116, 2793-2802.	1.4	78
83	Double Duty for CCL21 in Dendritic Cell Trafficking. Immunity, 2010, 32, 590-592.	14.3	12
84	CCR5 Deficiency Is a Risk Factor for Early Clinical Manifestations of West Nile Virus Infection but not for Viral Transmission. Journal of Infectious Diseases, 2010, 201, 178-185.	4.0	145
85	Roles for Chemokine Receptors in HIV Pathogenesis. , 2010, , 53-57.		0
86	International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacological Reviews, 2009, 61, 119-161.	16.0	677
87	Atherogenic Lipids Induce High-Density Lipoprotein Uptake and Cholesterol Efflux in Human Macrophages by Up-Regulating Transmembrane Chemokine CXCL16 without Engaging CXCL16-Dependent Cell Adhesion. Journal of Immunology, 2009, 182, 7928-7936.	0.8	38
88	Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man. PLoS Pathogens, 2009, 5, e1000321.	4.7	213
89	Intraâ€neural administration of fractalkine attenuates neuropathic painâ€related behaviour. Journal of Neurochemistry, 2008, 106, 640-649.	3.9	39
90	Genetic Deficiency of Chemokine Receptor CCR5 Is a Strong Risk Factor for Symptomatic West Nile Virus Infection: A Metaâ€Analysis of 4 Cohorts in the US Epidemic. Journal of Infectious Diseases, 2008, 197, 262-265.	4.0	201

#	Article	IF	CITATIONS
91	Chemokine Receptor CCR1 Regulates Inflammatory Cell Infiltration after Renal Ischemia-Reperfusion Injury. Journal of Immunology, 2008, 181, 8670-8676.	0.8	79
92	Chemokine Receptor CX3CR1 Mediates Skin Wound Healing by Promoting Macrophage and Fibroblast Accumulation and Function. Journal of Immunology, 2008, 180, 569-579.	0.8	272
93	Chemokines and chemokine receptors. , 2008, , 173-196.		2
94	Chemokine regulation of atherosclerosis. Journal of Leukocyte Biology, 2007, 82, 226-236.	3.3	71
95	Atherogenic Lipids Induce Adhesion of Human Coronary Artery Smooth Muscle Cells to Macrophages by Up-regulating Chemokine CX3CL1 on Smooth Muscle Cells in a TNFα-NFΰB-dependent Manner. Journal of Biological Chemistry, 2007, 282, 19167-19176.	3.4	54
96	CCR1 Deficiency Increases Susceptibility to Fatal Coronavirus Infection of the Central Nervous System. Viral Immunology, 2007, 20, 599-608.	1.3	33
97	WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus–truncated CXCR4. Blood, 2007, 109, 78-84.	1.4	86
98	An Oxidized Lipid–Peroxisome Proliferator-Activated Receptor γ–Chemokine Pathway in the Regulation of Macrophage-Vascular Smooth Muscle Cell Adhesion. Trends in Cardiovascular Medicine, 2007, 17, 269-274.	4.9	24
99	CC Chemokine Receptors. , 2007, , 1-2.		6
100	Chemokine Receptors., 2007,, 1-5.		0
100	Chemokine Receptors., 2007, , 1-5. Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387.	3.8	0
	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury.	3.8	
101	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43,		121
101	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43, 1221-1231. CCR5: no longer a †good for nothing' gene â€" chemokine control of West Nile virus infection. Trends	2.2	121 27
101 102 103	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43, 1221-1231. CCR5: no longer a †good for nothing' gene â€" chemokine control of West Nile virus infection. Trends in Immunology, 2006, 27, 308-312. Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated	2.2	121 27 95
101 102 103	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43, 1221-1231. CCR5: no longer a †good for nothing†denote gene †chemokine control of West Nile virus infection. Trends in Immunology, 2006, 27, 308-312. Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated Receptor I³â€ Dependent Pathway. Circulation, 2006, 114, 807-819. CCR5 deficiency increases risk of symptomatic West Nile virus infection. Journal of Experimental	2.2 6.8 1.6	121 27 95 95
101 102 103 104	Chemokine Receptor CX3CR1 Regulates Renal Interstitial Fibrosis after Ischemia-Reperfusion Injury. American Journal of Pathology, 2006, 169, 372-387. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Molecular Immunology, 2006, 43, 1221-1231. CCR5: no longer a †good for nothing' gene â€" chemokine control of West Nile virus infection. Trends in Immunology, 2006, 27, 308-312. Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated Receptor I³â€"Dependent Pathway. Circulation, 2006, 114, 807-819. CCR5 deficiency increases risk of symptomatic West Nile virus infection. Journal of Experimental Medicine, 2006, 203, 35-40.	2.2 6.8 1.6 8.5	121 27 95 95 472

#	Article	IF	CITATIONS
109	Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. Journal of Experimental Medicine, 2005, 202, 1087-1098.	8.5	352
110	Simian Cytomegalovirus Encodes Five Rapidly Evolving Chemokine Receptor Homologues. Virus Genes, 2004, 28, 71-83.	1.6	17
111	Distinct Mechanisms of Agonist-induced Endocytosis for Human Chemokine Receptors CCR5 and CXCR4. Molecular Biology of the Cell, 2003, 14, 3305-3324.	2.1	98
112	Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice. Circulation, 2003, 107, 1009-1016.	1.6	428
113	IL-15 and IL-2 oppositely regulate expression of the chemokine receptor CX3CR1. Blood, 2003, 102, 3494-3503.	1.4	46
114	Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. Journal of Clinical Investigation, 2003, 111, 1241-1250.	8.2	245
115	Chemokine Receptors. , 2003, , 11-36.		0
116	Chemokines: Role as Immunomodulators and Potential as Adjuvants for DNA Vaccines., 2003,, 316-334.		1
117	International Union of Pharmacology. XXX. Update on Chemokine Receptor Nomenclature. Pharmacological Reviews, 2002, 54, 227-229.	16.0	299
118	Chemokine Receptor Polymorphism and Risk of Acute Rejection in Human Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2002, 13, 754-758.	6.1	139
119	Coreceptor Choice and T Cell Depletion by R5, X4, and R5X4 HIV-1 Variants in CCR5-Deficient (CCR5Δ32) and Normal Human Lymphoid Tissue. Virology, 2001, 281, 239-247.	2.4	20
120	Viral exploitation and subversion of the immune system through chemokine mimicry. Nature Immunology, 2001, 2, 116-122.	14.5	329
121	CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nature Immunology, 2001, 2, 732-738.	14.5	380
122	Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Constitutively Activates NF-κB and Induces Proinflammatory Cytokine and Chemokine Production Via a C-Terminal Signaling Determinant. Journal of Immunology, 2001, 167, 505-513.	0.8	176
123	Association Between Polymorphism in the Chemokine Receptor CX3CR1 and Coronary Vascular Endothelial Dysfunction and Atherosclerosis. Circulation Research, 2001, 89, 401-407.	4.5	231
124	Chemokines and the Molecular Basis of Cancer Metastasis. New England Journal of Medicine, 2001, 345, 833-835.	27.0	376
125	The Chemokine Macrophage-Inflammatory Protein- $1\hat{l}\pm$ and Its Receptor CCR1 Control Pulmonary Inflammation and Antiviral Host Defense in Paramyxovirus Infection. Journal of Immunology, 2000, 165, 2677-2682.	0.8	160
126	Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. Aids, 2000, 14, 2671-2678.	2.2	173

#	Article	IF	Citations
127	Identification of a Gammaherpesvirus Selective Chemokine Binding Protein That Inhibits Chemokine Action. Journal of Virology, 2000, 74, 6741-6747.	3.4	175
128	CCR8 on Human Thymocytes Functions as a Human Immunodeficiency Virus Type 1 Coreceptor. Journal of Virology, 2000, 74, 6946-6952.	3.4	49
129	Host-related immunomodulators encoded by poxviruses and herpesviruses. Current Opinion in Microbiology, 2000, 3, 371-378.	5.1	106
130	Rapid Progression to AIDS in HIV ⁺ Individuals with a Structural Variant of the Chemokine Receptor CX ₃ CR1. Science, 2000, 287, 2274-2277.	12.6	305
131	Viral antichemokines: from pathogenesis to drug discovery. Journal of Clinical Investigation, 2000, 105, 1515-1517.	8.2	19
132	Impaired Antibacterial Host Defense in Mice Lacking the <i>N</i> formylpeptide Receptor. Journal of Experimental Medicine, 1999, 189, 657-662.	8.5	253
133	CHEMOKINE RECEPTORS AS HIV-1 CORECEPTORS: Roles in Viral Entry, Tropism, and Disease. Annual Review of Immunology, 1999, 17, 657-700.	21.8	2,044
134	Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell and Tissue Research, 1998, 292, 129-135.	2.9	112
135	CCR5 promoter polymorphism and HIV-1 disease progression. Lancet, The, 1998, 352, 866-870.	13.7	368
136	Microbial corruption of the chemokine system: An expanding paradigm. Seminars in Immunology, 1998, 10, 169-178.	5.6	47
137	Identification of CX 3CR1. Journal of Biological Chemistry, 1998, 273, 23799-23804.	3.4	252
138	Inherited Resistance to HIV-1 Conferred by an Inactivating Mutation in CC Chemokine Receptor 5: Studies in Populations with Contrasting Clinical Phenotypes, Defined Racial Background, and Quantified Risk. Molecular Medicine, 1997, 3, 23-36.	4.4	388
139	Identification of CCR8: A Human Monocyte and Thymus Receptor for the CC Chemokine I-309. Journal of Experimental Medicine, 1997, 186, 165-170.	8.5	213
140	Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1 $\hat{1}$ ±, MIP-1 $\hat{1}$ 2, and RANTES. Journal of Leukocyte Biology, 1996, 60, 147-152.	3.3	280
141	Molecular Cloning of Human Eotaxin, an Eosinophil-selective CC Chemokine, and Identification of a Specific Eosinophil Eotaxin Receptor, CC Chemokine Receptor 3. Journal of Biological Chemistry, 1996, 271, 7725-7730.	3.4	380
142	Cloning and Functional Expression of a Human Eosinophil CC Chemokine Receptor. Journal of Biological Chemistry, 1995, 270, 16491-16494.	3.4	222
143	Chemokine receptors and molecular mimicry. Trends in Immunology, 1994, 15, 281-287.	7.5	132