Nan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912301/publications.pdf

Version: 2024-02-01

26	538	14	22
papers	citations	h-index	g-index
26	26	26	131 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Numerical analysis of a second order ensemble method for evolutionary magnetohydrodynamics equations at small magnetic Reynolds number. Numerical Methods for Partial Differential Equations, 2022, 38, 1407-1436.	3.6	6
2	A second order ensemble method with different subdomain time steps for simulating coupled surfaceâ€groundwater flows. Numerical Methods for Partial Differential Equations, 2022, 38, 1880-1907.	3.6	7
3	Numerical analysis of a second order ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Journal of Computational and Applied Mathematics, 2022, 406, 113934.	2.0	4
4	Robust SAV-Ensemble algorithms for parametrized flow problems with energy stable open boundary conditions. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114709.	6.6	7
5	Stabilized Scalar Auxiliary Variable Ensemble Algorithms for Parameterized Flow Problems. SIAM Journal of Scientific Computing, 2021, 43, A2869-A2896.	2.8	15
6	An Artificial Compressibility Crank-Nicolson Leap-Frog Method for the Stokes-Darcy Model and Application in Ensemble Simulations. SIAM Journal on Numerical Analysis, 2021, 59, 401-428.	2.3	20
7	SAV decoupled ensemble algorithms for fast computation of Stokes–Darcy flow ensembles. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114150.	6.6	15
8	An artificial compressibility ensemble algorithm for a stochastic Stokesâ€Darcy model with random hydraulic conductivity and interface conditions. International Journal for Numerical Methods in Engineering, 2020, 121, 712-739.	2.8	31
9	On the Foundations of Eddy Viscosity Models of Turbulence. Fluids, 2020, 5, 167.	1.7	6
10	A second order, linear, unconditionally stable, Crank–Nicolson–Leapfrog scheme for phase field models of two-phase incompressible flows. Applied Mathematics Letters, 2020, 108, 106521.	2.7	8
11	An efficient algorithm for simulating ensembles of parameterized flow problems. IMA Journal of Numerical Analysis, 2019, 39, 1180-1205.	2.9	25
12	A Pressure-Correction Ensemble Scheme for Computing Evolutionary Boussinesq Equations. Journal of Scientific Computing, 2019, 80, 315-350.	2.3	14
13	An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Computer Methods in Applied Mechanics and Engineering, 2019, 343, 249-275.	6.6	26
14	A Second-Order Time-Stepping Scheme for Simulating Ensembles of Parameterized Flow Problems. Computational Methods in Applied Mathematics, 2019, 19, 681-701.	0.8	20
15	Analysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson pair dispersion. Computers and Mathematics With Applications, 2018, 75, 1973-2001.	2.7	12
16	An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numerical Methods for Partial Differential Equations, 2018, 34, 2129-2152.	3.6	18
17	A secondâ€order ensemble method based on a blended backward differentiation formula timestepping scheme for timeâ€dependent Navier–Stokes equations. Numerical Methods for Partial Differential Equations, 2017, 33, 34-61.	3.6	34
18	An Ensemble-Proper Orthogonal Decomposition Method for the Nonstationary NavierStokes Equations. SIAM Journal on Numerical Analysis, 2017, 55, 286-304.	2.3	48

#	Article	IF	CITATION
19	An optimally accurate discrete regularization for second order timestepping methods for Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 388-405.	6.6	21
20	Algorithms and models for turbulence not at statistical equilibrium. Computers and Mathematics With Applications, 2016, 71, 2352-2372.	2.7	11
21	Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems. Computational Methods in Applied Mathematics, 2015, 15, 307-330.	0.8	10
22	A Higher Order Ensemble Simulation Algorithm for Fluid Flows. Journal of Scientific Computing, 2015, 64, 264-288.	2.3	32
23	Analysis of Model Variance for Ensemble Based Turbulence Modeling. Computational Methods in Applied Mathematics, 2015, 15, 173-188.	0.8	30
24	Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numerical Methods for Partial Differential Equations, 2015, 31, 630-651.	3.6	43
25	A Crank–Nicolson Leapfrog stabilization: Unconditional stability and two applications. Journal of Computational and Applied Mathematics, 2015, 281, 263-276.	2.0	17
26	AN ALGORITHM FOR FAST CALCULATION OF FLOW ENSEMBLES. , 2014, 4, 273-301.		58