
Christel Verollet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2912118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage polarization: convergence point targeted by Mycobacterium tuberculosis and HIV. Frontiers in Immunology, 2011, 2, 43.	4.8	115
2	Tunneling Nanotubes: Intimate Communication between Myeloid Cells. Frontiers in Immunology, 2018, 9, 43.	4.8	109
3	Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. Journal of Cell Biology, 2006, 172, 517-528.	5.2	101
4	HIV-1 reprograms the migration of macrophages. Blood, 2015, 125, 1611-1622.	1.4	82
5	Extracellular proteolysis in macrophage migration: Losing grip for a breakthrough. European Journal of Immunology, 2011, 41, 2805-2813.	2.9	80
6	Macrophage Mesenchymal Migration Requires Podosome Stabilization by Filamin A. Journal of Biological Chemistry, 2012, 287, 13051-13062.	3.4	78
7	Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Reports, 2019, 26, 3586-3599.e7.	6.4	76
8	Placental Macrophages Are Impaired in Chorioamnionitis, an Infectious Pathology of the Placenta. Journal of Immunology, 2013, 191, 5501-5514.	0.8	60
9	Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2556-E2565.	7.1	56
10	γ-Tubulin ring complexes regulate microtubule plus end dynamics. Journal of Cell Biology, 2009, 187, 327-334.	5.2	54
11	The Drosophila γ-Tubulin Small Complex Subunit Dgrip84 Is Required for Structural and Functional Integrity of the Spindle Apparatus. Molecular Biology of the Cell, 2006, 17, 272-282.	2.1	45
12	HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. Journal of Immunology, 2010, 184, 7030-7039.	0.8	41
13	Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Frontiers in Immunology, 2018, 9, 459.	4.8	40
14	Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. ELife, 2020, 9, .	6.0	31
15	Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB Journal, 2013, 27, 3608-3618.	0.5	28
16	Î ³ -Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO Journal, 2014, 33, 114-128.	7.8	27
17	HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef. Frontiers in Immunology, 2015, 6, 514.	4.8	25
18	Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathogens, 2020, 16, e1008929.	4.7	21

CHRISTEL VEROLLET

#	Article	IF	CITATIONS
19	The osteoclast, a target cell for microorganisms. Bone, 2019, 127, 315-323.	2.9	20
20	Cell-to-Cell Spreading of HIV-1 in Myeloid Target Cells Escapes SAMHD1 Restriction. MBio, 2019, 10, .	4.1	20
21	Single-Domain Antibody-SH3 Fusions for Efficient Neutralization of HIV-1 Nef Functions. Journal of Virology, 2012, 86, 4856-4867.	3.4	19
22	Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Reports, 2020, 33, 108547.	6.4	18
23	A Pulmonary <i>Lactobacillus murinus</i> Strain Induces Th17 and RORÎ ³ t+ Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. Journal of Immunology, 2021, 207, 1857-1870.	0.8	17
24	Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cellular and Molecular Life Sciences, 2021, 78, 6087-6104.	5.4	12
25	Modulation of Cystatin C in Human Macrophages Improves Anti-Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. Frontiers in Immunology, 2021, 12, 742822.	4.8	12
26	Primary myeloid cell proteomics and transcriptomics: importance of ß tubulin isotypes for osteoclast function. Journal of Cell Science, 2020, 133, .	2.0	11
27	Editorial: The Mononuclear Phagocyte System in Infectious Disease. Frontiers in Immunology, 2019, 10, 1443.	4.8	10
28	Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12046.	12.2	9
29	Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. Journal of Leukocyte Biology, 2022, 112, 1261-1271.	3.3	9
30	Capillary electrophoresis as a simple and sensitive method to study polysaccharides ofSinorhizobium sp. NGR234. Electrophoresis, 2003, 24, 3364-3370.	2.4	7
31	HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. International Journal of Molecular Sciences, 2020, 21, 3154.	4.1	7
32	Dysregulation of the IFN-I signaling pathway by <i>Mycobacterium tuberculosis</i> leads to exacerbation of HIV-1 infection of macrophages. Journal of Leukocyte Biology, 2022, 112, 1329-1342.	3.3	6
33	Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts. ELife, 0, 11, .	6.0	3
34	HIV-1 Nef alters podosomes and promotes the mesenchymal migration in human macrophages. Retrovirology, 2013, 10, .	2.0	2
35	Tuberculosis Boosts HIV-1 Production by Macrophages Through IL-10/STAT3-Dependent Tunneling Nanotube Formation. SSRN Electronic Journal, 0, , .	0.4	1