Mingqiang Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911930/publications.pdf

Version: 2024-02-01

840776 1199594 1,257 12 11 12 citations h-index g-index papers 12 12 12 671 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in $2\hat{a} \in 18\hat{A}$ GHz. Carbon, 2022, 193, 182-194.	10.3	108
2	Emerging Materials and Designs for Low―and Multiâ€Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?. Advanced Functional Materials, 2022, 32, .	14.9	185
3	Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption. Nano-Micro Letters, 2022, 14, 102.	27.0	156
4	Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz. Journal of Alloys and Compounds, 2021, 854, 157113.	5.5	20
5	Phase Manipulating toward Molybdenum Disulfide for Optimizing Electromagnetic Wave Absorbing in Gigahertz. Advanced Functional Materials, 2021, 31, 2011229.	14.9	141
6	Dumbbell-Like Fe ₃ O ₄ @N-Doped Carbon@2H/1T-MoS ₂ with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing & Dielectric L	8.0	62
7	Boosted microwave absorbing performance of Ce2Fe17N3-Î@SiO2 composite with broad bandwidth and low thickness. Journal of Alloys and Compounds, 2021, 883, 160835.	5. 5	15
8	Optimisation of microwave absorption properties of Fe-substituted Y2Co17â^'xFex soft-magnetic composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 27849.	2.2	5
9	Ultrathin MoS ₂ Nanosheets Encapsulated in Hollow Carbon Spheres: A Case of a Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. ACS Applied Materials & Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. ACS Applied Materials & Dielectric Acceptance (1978) 12, 20785-20796.	8.0	120
10	Layer by layer 2D MoS2/rGO hybrids: An optimized microwave absorber for high-efficient microwave absorption. Applied Surface Science, 2019, 470, 899-907.	6.1	62
11	One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Applied Surface Science, 2018, 447, 244-253.	6.1	115
12	Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209-217.	10.3	268