List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property. Journal of Membrane Science, 2022, 641, 119922.	4.1	21
2	Additive Manufacturing of Two-Dimensional Conductive Metal–Organic Framework with Multidimensional Hybrid Architectures for High-Performance Energy Storage. Nano Letters, 2022, 22, 1198-1206.	4.5	21
3	Uniformly Sized Stem Cell Spheroids for Treatment of Hind Limb Ischemia: Size Effect. Advanced Materials Interfaces, 2022, 9, .	1.9	3
4	Glucose-sensitive membrane with phenylboronic acid-based contraction-type microgels as chemical valves. Journal of Membrane Science, 2022, 650, 120406.	4.1	5
5	Construction of single-injection vaccine using new time-controlled release system. , 2022, 137, 212812.		6
6	Magnetic Field-Assisted Fast Assembly of Microgel Colloidal Crystals. Langmuir, 2022, 38, 6057-6065.	1.6	5
7	Construction of a Few-Layered COF@CNT Composite as an Ultrahigh Rate Cathode for Low-Cost K-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 31234-31244.	4.0	22
8	Mechanically strong and on-demand dissoluble chitosan hydrogels for wound dressing applications. Carbohydrate Polymers, 2022, 294, 119774.	5.1	32
9	Human serum albumin-imprinted polymers with high capacity and selectivity for abundant protein depletion. Acta Biomaterialia, 2021, 126, 249-258.	4.1	18
10	Diels–Alder Cross-Linked, Washing-Free Hydrogel Films with Ordered Wrinkling Patterns for Multicellular Spheroid Generation. Biomacromolecules, 2021, 22, 3474-3485.	2.6	6
11	Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor. Chemical Engineering Journal, 2021, 415, 128839.	6.6	50
12	Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 42052-42062.	4.0	43
13	Construction of shape memorable imprinted cavities for protein recognition using oligo-l-lysine-based peptide crosslinker. Journal of Colloid and Interface Science, 2021, 595, 118-128.	5.0	11
14	A 3D printed synergistic aerogel microreactor toward stable and high-efficiency photocatalytic degradation. Materials Today Chemistry, 2021, 22, 100566.	1.7	6
15	A highly programmable platform for sequential release of protein therapeutics. Journal of Materials Chemistry B, 2021, 9, 1616-1624.	2.9	6
16	Unveiling the Actual Catalytic Sites in Nanozymeâ€Catalyzed Oxidation of <i>o</i> â€Phenylenediamine. Small, 2021, 17, e2104083.	5.2	21
17	Injectable Carrier for Zero-Order Release of Salmon Calcitonin. ACS Biomaterials Science and Engineering, 2020, 6, 485-493.	2.6	13
18	Shear-assisted grain coarsening in colloidal polycrystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24055-24060.	3.3	7

#	Article	IF	CITATIONS
19	Smart microneedle patches for rapid, and painless transdermal insulin delivery. Journal of Materials Chemistry B, 2020, 8, 9335-9342.	2.9	19
20	A new emulsification-crosslinking technique for preparation of physically crosslinked chitosan microspheres. Journal of Bioactive and Compatible Polymers, 2020, 35, 289-300.	0.8	10
21	Glucose-Triggered Micellization of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Td (glycol)- Copolymer. ACS Applied Polymer Materials, 2020, 2, 3966-3976.	<i>b</i> -p 2.0	oly(<i>N</i> -i 7
22	Precise and tunable time-controlled drug release system using layer-by-layer films as erodible coatings. Materials Science and Engineering C, 2020, 116, 111244.	3.8	13
23	Hydrogenâ€Bonded Films for Zeroâ€Order Release of Leuprolide. Macromolecular Bioscience, 2020, 20, 2000050.	2.1	6
24	Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA). Science China Chemistry, 2020, 63, 377-385.	4.2	11
25	Periodic pattern of iron oxide using 2D microgel colloidal crystal as template. Applied Surface Science, 2020, 513, 145737.	3.1	2
26	PEGylated leuprolide with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry, 2020, 28, 115306.	1.4	11
27	A sustained zero-order release carrier for long-acting, peakless basal insulin therapy. Journal of Materials Chemistry B, 2020, 8, 1952-1959.	2.9	15
28	PHEMA hydrogel films crosslinked with dynamic disulfide bonds: synthesis, swelling-induced mechanical instability and self-healing. Polymer Chemistry, 2019, 10, 4844-4851.	1.9	25
29	A CO ₂ -responsive hydrogel film for optical sensing of dissolved CO ₂ . Soft Matter, 2019, 15, 6107-6115.	1.2	14
30	Patterned PHEMA Films Synthesized by Redox Polymerization for Multicellular Spheroid Generation. Industrial & Engineering Chemistry Research, 2019, 58, 10713-10723.	1.8	6
31	Layer-by-Layer Assembly of Microgel Colloidal Crystals via Photoinitiated Alkyne–Azide Click Reaction. ACS Omega, 2019, 4, 5650-5660.	1.6	17
32	Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers. ACS Macro Letters, 2019, 8, 255-260.	2.3	230
33	Extraordinarily Large LCST Depression Converts Nonthermosensitive Polymer to Thermosensitive. Macromolecules, 2019, 52, 365-375.	2.2	20
34	Peptide-Cross-Linked Protein-Imprinted Polymers: Easy Template Removal and Excellent Imprinting Effect. CCS Chemistry, 2019, 1, 544-552.	4.6	24
35	Order–Disorder Transition in Doped Microgel Colloidal Crystals and Its Application for Optical Sensing. ACS Applied Materials & Interfaces, 2018, 10, 14254-14258.	4.0	44
36	Inducing and erasing of defect state in polymerized microgel colloidal crystals via external stimuli. Journal of Colloid and Interface Science, 2018, 526, 83-89.	5.0	17

#	Article	IF	CITATIONS
37	Zero-Order Release of Gossypol Improves Its Antifertility Effect and Reduces Its Side Effects Simultaneously. Biomacromolecules, 2018, 19, 1918-1925.	2.6	27
38	The synthesis of a contraction-type glucose-sensitive microgel working at physiological temperature guided by a new glucose-sensing mechanism. Polymer Chemistry, 2018, 9, 1012-1021.	1.9	21
39	Tetrahedral, Octahedral, and Triangular Dipyramidal Microgel Clusters with Thermosensitivity Fabricated from Binary Colloidal Crystals Template and Thiol–Ene Reaction. ACS Macro Letters, 2018, 7, 80-84.	2.3	27
40	Polymer composite hydrogels containing carbon nanomaterials—Morphology and mechanical and functional performance. Progress in Polymer Science, 2018, 77, 1-18.	11.8	101
41	Glucose-Induced Transition among Three States of a Doped Microgel Colloidal Crystal. Langmuir, 2018, 34, 8288-8293.	1.6	7
42	Thin hydrogel films based on lectin-saccharide biospecific interaction for label-free optical glucose sensing. Sensors and Actuators B: Chemical, 2018, 272, 243-251.	4.0	25
43	"Bitter-Sweet―Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules, 2017, 18, 778-786.	2.6	30
44	One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer, 2017, 110, 114-123.	1.8	32
45	Assembly of highly ordered 2D arrays of silver-PNIPAM hybrid microgels. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1212-1221.	2.0	9
46	A Drug Carrier for Sustained Zero-Order Release of Peptide Therapeutics. Scientific Reports, 2017, 7, 5524.	1.6	45
47	Unexpected Large Depression of VPTT of a PNIPAM Microgel by Low Concentration of PVA. Macromolecular Chemistry and Physics, 2017, 218, 1700364.	1.1	11
48	Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale, 2017, 9, 150-163.	2.8	35
49	Glucose oxidase-incorporated hydrogel thin film for fast optical glucose detecting under physiological conditions. Materials Today Chemistry, 2016, 1-2, 7-14.	1.7	35
50	Fabrication of Large-Area Two-Dimensional Microgel Colloidal Crystals via Interfacial Thiol–Ene Click Reaction. Langmuir, 2016, 32, 3977-3982.	1.6	22
51	Synthesis of a Colloidal Molecule from Soft Microgel Spheres. ACS Macro Letters, 2016, 5, 565-568.	2.3	30
52	Large-area 2D microgel colloidal crystals fabricated via benzophenone-based photochemical reaction. RSC Advances, 2016, 6, 82006-82013.	1.7	10
53	Facile Assembly of Large-Area 2D Microgel Colloidal Crystals Using Charge-Reversible Substrates. Langmuir, 2016, 32, 12876-12884.	1.6	17
54	Zero-order release of polyphenolic drugs from dynamic, hydrogen-bonded LBL films. Soft Matter, 2016, 12, 1085-1092.	1.2	55

#	Article	IF	CITATIONS
55	Photonic Crystals with a Reversibly Inducible and Erasable Defect State Using External Stimuli. Angewandte Chemie - International Edition, 2015, 54, 9257-9261.	7.2	54
56	Dynamic Layer-by-Layer Films: A Platform for Zero-Order Release. Biomacromolecules, 2015, 16, 2032-2039.	2.6	34
57	Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups. Desalination, 2015, 359, 156-166.	4.0	83
58	Swelling-induced surface instability patterns guided by pre-introduced structures. Soft Matter, 2015, 11, 1937-1944.	1.2	10
59	Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry, 2015, 6, 2204-2213.	1.9	132
60	Synthesis and thermal gelation of hydroxypropyl chitin. RSC Advances, 2015, 5, 39677-39685.	1.7	13
61	Growth of giant silver dendrites on layer-by-layer assembled films. Polymer, 2015, 63, 237-243.	1.8	12
62	Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution. Polymer Bulletin, 2015, 72, 2075-2087.	1.7	8
63	Chitosan as inter-cellular linker to accelerate multicellular spheroid generation in hydrogel scaffold. Polymer, 2015, 77, 366-376.	1.8	16
64	Dynamic layer-by-layer films linked with Schiff base bond for sustained drug release. RSC Advances, 2015, 5, 83914-83921.	1.7	14
65	Effect of particle size in a colloidal hydrogel scaffold for 3D cell culture. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1139-1147.	2.5	20
66	Dynamically bonded layerâ€byâ€layer films: Dynamic properties and applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
67	Facile Assembly of 3D Binary Colloidal Crystals from Soft Microgel Spheres. Macromolecular Rapid Communications, 2014, 35, 630-634.	2.0	23
68	Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation. Acta Biomaterialia, 2014, 10, 1965-1974.	4.1	52
69	Swelling Kinetics of Microgels Embedded in a Polyacrylamide Hydrogel Matrix. ChemPhysChem, 2014, 15, 1785-1792.	1.0	21
70	Contraction-type glucose-sensitive microgel functionalized with a 2-substituted phenylboronic acid ligand. Polymer Chemistry, 2014, 5, 1782-1790.	1.9	63
71	Thermal gelation of chitosan in an aqueous alkali–urea solution. Soft Matter, 2014, 10, 8245-8253. 	1.2	33
72	Multiple responsive hydrogel films based on dynamic Schiff base linkages. Polymer Chemistry, 2014, 5, 7081-7089.	1.9	46

5

#	Article	IF	CITATIONS
73	Hydrogel Thin Film with Swelling-Induced Wrinkling Patterns for High-Throughput Generation of Multicellular Spheroids. Biomacromolecules, 2014, 15, 3306-3312.	2.6	61
74	Swelling-induced surface instability of a hydrogen-bonded LBL film and its self-healing. Polymer, 2014, 55, 2197-2204.	1.8	29
75	Boronic acid-containing hydrogels: synthesis and their applications. Chemical Society Reviews, 2013, 42, 8106.	18.7	368
76	Polymerized Microgel Colloidal Crystals: Photonic Hydrogels with Tunable Band Gaps and Fast Response Rates. Angewandte Chemie - International Edition, 2013, 52, 9961-9965.	7.2	142
77	Mutual interaction between embedded microgel particles and the surrounding hydrogel matrix. Soft Matter, 2013, 9, 2629.	1.2	27
78	In situ generation of fluorescent silver nanoclusters in layer-by-layer assembled films. Journal of Materials Chemistry C, 2013, 1, 2036.	2.7	11
79	Release of Polyphenolic Drugs from Dynamically Bonded Layer-by-Layer Films. ACS Applied Materials & Interfaces, 2013, 5, 3541-3548.	4.0	71
80	Redoxâ€active LBL films via <i>in situ</i> template polymerization of hydroquinone. Journal of Applied Polymer Science, 2013, 129, 3070-3076.	1.3	9
81	Ultrathin Hydrogel Films for Rapid Optical Biosensing. Biomacromolecules, 2012, 13, 92-97.	2.6	94
82	Dynamically bonded layer-by-layer films for self-regulated insulin release. Journal of Materials Chemistry, 2012, 22, 16299.	6.7	60
83	Tuning properties of injectable hydrogel scaffold by PEG blending. Polymer, 2012, 53, 5124-5131.	1.8	26
84	Assembling of gold nanorods on P(NIPAM–AAPBA) microgels: a large shift in the plasmon band and colorimetric glucose sensing. RSC Advances, 2012, 2, 4768.	1.7	34
85	Fractal Structures of the Hydrogels Formed in Situ from Poly(N-isopropylacrylamide) Microgel Dispersions. Langmuir, 2012, 28, 10873-10880.	1.6	30
86	Oxidative polymerization of hydroquinone using deoxycholic acid supramolecular template. Science China Chemistry, 2012, 55, 830-835.	4.2	17
87	Silver-loading in uncrosslinked hydrogen-bonded LBL films: structure change and improved stability. Journal of Materials Chemistry, 2011, 21, 548-555.	6.7	31
88	Novel Redox Hydrogel by in Situ Gelation of Chitosan as a Result of Template Oxidative Polymerization of Hydroquinone. Macromolecules, 2011, 44, 2245-2252.	2.2	43
89	Thermoreversible Hydrogel for In Situ Generation and Release of HepG2 Spheroids. Biomacromolecules, 2011, 12, 578-584.	2.6	64
90	Kinetics of Glucose-Induced Swelling of P(NIPAM-AAPBA) Microgels. Macromolecules, 2011, 44, 4479-4486.	2.2	90

#	Article	IF	CITATIONS
91	Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chemical Communications, 2011, 47, 4439.	2.2	98
92	PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter, 2011, 7, 6375.	1.2	399
93	Gelation Kinetics of Thermosensitive PNIPAM Microgel Dispersions. Macromolecular Chemistry and Physics, 2011, 212, 2052-2060.	1.1	40
94	Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer, 2010, 51, 2668-2675.	1.8	65
95	Leadâ€sensitive PNIPAM microgels modified with crown ether groups. Journal of Polymer Science Part A, 2010, 48, 4120-4127.	2.5	38
96	Thermally Induced Phase Transition of Glucose-Sensitive Coreâ^'Shell Microgels. ACS Applied Materials & Interfaces, 2010, 2, 760-767.	4.0	40
97	Supramolecular hydrogels inspired by collagen for tissue engineering. Organic and Biomolecular Chemistry, 2010, 8, 3267.	1.5	62
98	Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis. Journal of Materials Chemistry, 2010, 20, 5937.	6.7	114
99	SYNTHESIS OF GLUCOSE-SENSITIVE CORE-SHELL MICROGELS. Acta Polymerica Sinica, 2010, 010, 280-284.	0.0	2
100	SYNTHESIS OF N-ISOPROYLACRYLAMIDE COPOLYMER MICROGELS SENSITIVE TO LEAD IONS. Acta Polymerica Sinica, 2010, 010, 793-796.	0.0	1
101	Synthesis of glucose-sensitive self-assembled films and their application in controlled drug delivery. Polymer, 2009, 50, 4205-4211.	1.8	61
102	Salt-induced erosion of hydrogen-bonded layer-by-layer assembled films. Soft Matter, 2009, 5, 860-867.	1.2	40
103	In Situ Gelation of P(NIPAM-HEMA) Microgel Dispersion and Its Applications as Injectable 3D Cell Scaffold. Biomacromolecules, 2009, 10, 1410-1415.	2.6	123
104	Stability of hydrogen-bonded hydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter, 2009, 5, 842.	1.2	51
105	Layer-by-layer multilayer films linked with reversible boronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter, 2009, 5, 2302.	1.2	90
106	New polymerized crystalline colloidal array for glucose sensing. Chemical Communications, 2009, , 1867.	2.2	89
107	AN APPARENT KINETICS STUDY ON THE OXIDATIVE POLYMERIZATION OF <i>p</i> -DIHYDROXYBENZENE USING CHITOSAN AS TEMPLATE. Acta Polymerica Sinica, 2009, 009, 572-575.	0.0	0
108	Fabry–Pérot fringes of hydrogen-bonded assembly films. Thin Solid Films, 2008, 516, 4018-4024.	0.8	27

#	Article	IF	CITATIONS
109	Permeability Control of Glucose-Sensitive Nanoshells. Biomacromolecules, 2007, 8, 3842-3847.	2.6	97
110	The influence of pH on a hydrogen-bonded assembly film. Soft Matter, 2007, 3, 463-469.	1.2	59
111	A Novel Ultraâ€hydrophobic Surface: Statically Nonâ€wetting but Dynamically Nonâ€sliding. Advanced Functional Materials, 2007, 17, 2739-2745.	7.8	88
112	From Cloudy to Transparent: Chain Rearrangement in Hydrogen-Bonded Layer-by-Layer Assembled Films. ChemPhysChem, 2007, 8, 418-424.	1.0	24
113	Water uptake behavior of hydrogen-bonded PVPON–PAA LBL film. Soft Matter, 2006, 2, 699-704.	1.2	42
114	Fabryâ^'Perot Fringes and Their Application To Study the Film Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAA Films. Journal of Physical Chemistry B, 2006, 110, 13484-13490.	1.2	68
115	Synthesis and Volume Phase Transitions of Glucose-Sensitive Microgels. Biomacromolecules, 2006, 7, 3196-3201.	2.6	230
116	Composite Thin Film by Hydrogen-Bonding Assembly of Polymer Brush and Poly(vinylpyrrolidone). Langmuir, 2006, 22, 338-343.	1.6	46
117	Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces. ChemPhysChem, 2006, 7, 2067-2070.	1.0	88
118	Mechanical properties of polyelectrolyte multilayer self-assembled films. Thin Solid Films, 2005, 474, 159-164.	0.8	19
119	Inverted-Colloidal-Crystal Hydrogel Matrices as Three-Dimensional Cell Scaffolds. Advanced Functional Materials, 2005, 15, 725-731.	7.8	117
120	Covalent Cross-Linked Polymer/Single-Wall Carbon Nanotube Multilayer Films. Chemistry of Materials, 2005, 17, 2131-2135.	3.2	71
121	Single Component Chitosan Hydrogel Microcapsule from a Layer-by-Layer Approach. Biomacromolecules, 2005, 6, 2365-2369.	2.6	85
122	Facile Creation of a Bionic Super-Hydrophobic Block Copolymer Surface. Advanced Materials, 2004, 16, 1830-1833.	11.1	183
123	Porous and Nonporous Nanocapsules by H-Bonding Self-Assembly. Macromolecules, 2004, 37, 10059-10062.	2.2	48
124	Polysilsesquioxane Nanosheets Synthesized in Confined Environment. Macromolecular Rapid Communications, 2003, 24, 676-680.	2.0	1
125	Fabrication of Hollow Capsules Based on Hydrogen Bonding. Advanced Materials, 2003, 15, 832-835.	11.1	142
126	Novel alternating polymer adsorption/surface activation self-assembled film based on hydrogen bond. Thin Solid Films, 2003, 437, 280-284.	0.8	6

#	Article	IF	CITATIONS
127	Fabrication of Stable Hollow Capsules by Covalent Layer-by-Layer Self-Assembly. Macromolecules, 2003, 36, 4238-4240.	2.2	105
128	Inclusion Complexation of Diphenylamine-4-diazonium Chloride and p-Sulfonatocalix[4]arene. Supramolecular Chemistry, 2002, 14, 473-475.	1.5	3
129	Photo-induced DNA cleavage in self-assembly multilayer films. New Journal of Chemistry, 2002, 26, 617-620.	1.4	16
130	Fabrication of covalently attached conducting multilayer self-assembly film of polyaniline by in situ coupling reaction. Synthetic Metals, 2002, 128, 305-309.	2.1	12
131	Multilayer Films from Phenolic Resin–Sodium Dodecyl Sulfate Complex and Polycations. Journal of Colloid and Interface Science, 2002, 249, 91-95.	5.0	11
132	Stable Self-Assembled Multilayer Films of Diazo Resin and Poly(maleic anhydride-co-styrene) Based on Charge-Transfer Interaction. Langmuir, 2001, 17, 5021-5024.	1.6	48
133	Self-assembly of small molecules: An approach combining electrostatic self-assembly technology with host–guest chemistry. New Journal of Chemistry, 2001, 25, 483-486.	1.4	31
134	Fabrication of an ESA Multilayer Film from a Diazo Resin by Direct Surface Charge Reversal. Macromolecular Rapid Communications, 2001, 22, 842-845.	2.0	9
135	A novel photosensitive ternary complex consisting of phenol-formaldehyde resin, sodium dodecyl sulfate, and diazo resin. Journal of Polymer Science Part A, 2000, 38, 2566-2571.	2.5	7
136	A novel photosensitive ternary complex consisting of phenol-formaldehyde resin, sodium dodecyl sulfate, and diazo resin. , 2000, 38, 2566.		1
137	Surface Modification of Silica Gel by Interfacial Polyelectrolyte Complexes. Adsorption Science and Technology, 1999, 17, 459-467.	1.5	Ο