Ian Reid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911888/publications.pdf Version: 2024-02-01

IAN REID

#	Article	IF	CITATIONS
1	Loss of function of the carbon catabolite repressor CreA leads to low but inducerâ€independent expression from the feruloyl esterase B promoter in Aspergillus niger. Biotechnology Letters, 2021, 43, 1323-1336.	1.1	4
2	Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR. Applied Microbiology and Biotechnology, 2018, 102, 2723-2736.	1.7	37
3	Application of Transcriptomics to Compare the Carbohydrate Active Enzymes That Are Expressed by Diverse Genera of Anaerobic Fungi to Degrade Plant Cell Wall Carbohydrates. Frontiers in Microbiology, 2018, 9, 1581.	1.5	58
4	Evaluating Programs for Predicting Genes and Transcripts with RNA-Seq Support in Fungal Genomes. Methods in Molecular Biology, 2018, 1775, 209-227.	0.4	0
5	Identification of Genes Involved in the Degradation of Lignocellulose Using Comparative Transcriptomics. Methods in Molecular Biology, 2017, 1588, 279-298.	0.4	3
6	An Evolutionarily Conserved Transcriptional Activator-Repressor Module Controls Expression of Genes for D-Galacturonic Acid Utilization in <i>Aspergillus niger</i> . Genetics, 2017, 205, 169-183.	1.2	42
7	SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models. BMC Bioinformatics, 2014, 15, 229.	1.2	30
8	Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 2011, 29, 922-927.	9.4	428
9	A Biochemical Genomics Screen for Substrates of Ste20p Kinase Enables the In Silico Prediction of Novel Substrates. PLoS ONE, 2009, 4, e8279.	1.1	2
10	Purified pectinase lowers cationic demand in peroxide-bleached mechanical pulp. Enzyme and Microbial Technology, 2004, 34, 499-504.	1.6	37
11	Pectinase in papermaking: solving retention problems in mechanical pulps bleached with hydrogen peroxide. Enzyme and Microbial Technology, 2000, 26, 115-123.	1.6	91
12	Kraft pulp bleaching and delignification by Trametes versicolor. Journal of Biotechnology, 1997, 53, 215-236.	1.9	113
13	Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 1995, 61, 1876-1880.	1.4	491
14	Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiology Reviews, 1994, 13, 369-375.	3.9	114
15	Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by <i>Trametes versicolor</i> . Applied and Environmental Microbiology, 1994, 60, 1395-1400.	1.4	35
16	Biological pulping in paper manufacture. Trends in Biotechnology, 1991, 9, 262-265.	4.9	31
17	Anthracenediethanol inhibits lignin degradation by Phanerochaete chrysosporium by competing for oxidation by lignin peroxidase, and not by trapping singlet oxygen. Biodegradation, 1991, 2, 61-69.	1.5	2
18	Determining molecular weight distributions of lignins and their biodegradation products by gel filtration on a high-performance acarose column with a mixed ethanol-aqueous alkali solvent. Biotechnology Letters, 1991, 5, 215-218.	0.5	5

Ian Reid

#	Article	IF	CITATIONS
19	Effect of polydimethylsiloxane oxygen carriers on the biological bleaching of hardwood kraft pulp by Trametes versicolor. Applied Microbiology and Biotechnology, 1991, 35, 669.	1.7	24
20	Intermediates and products of synthetic lignin (dehydrogenative polymerizate) degradation by Phlebia tremellosa. Applied and Environmental Microbiology, 1991, 57, 2834-2840.	1.4	8
21	Solid-state fermentations for biological delignification. Enzyme and Microbial Technology, 1989, 11, 786-803.	1.6	113
22	Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme and Microbial Technology, 1989, 11, 804-809.	1.6	38
23	Suitability of aspenwood biologically delignified with Pheblia tremellosus for fermentation to ethanol or butanediol. Applied Microbiology and Biotechnology, 1987, 26, 120-125.	1.7	29
24	Further study discounts role for singlet oxygen in fungal degradation of lignin model compounds. Biochemical and Biophysical Research Communications, 1983, 111, 200-204.	1.0	20