
Amila M Suraweera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Frontiers in Oncology, 2018, 8, 92.	1.3	506
2	Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. Molecular Cell, 2012, 48, 242-253.	4.5	264
3	Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. Journal of Cell Biology, 2007, 177, 969-979.	2.3	170
4	Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Human Molecular Genetics, 2009, 18, 3384-3396.	1.4	136
5	Senataxin Plays an Essential Role with DNA Damage Response Proteins in Meiotic Recombination and Gene Silencing. PLoS Genetics, 2013, 9, e1003435.	1.5	135
6	Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising. Frontiers in Oncology, 2014, 4, 86.	1.3	100
7	Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Research, 2014, 42, 6326-6336.	6.5	48
8	Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription. Human Molecular Genetics, 2006, 15, 2239-2249.	1.4	40
9	Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nature Communications, 2019, 10, 5501.	5.8	40
10	Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Frontiers in Cell and Developmental Biology, 2021, 9, 633305.	1.8	40
11	Néstor-Guillermo Progeria Syndrome: a biochemical insight into Barrier-to-Autointegration Factor 1, alanine 12 threonine mutation. BMC Molecular Biology, 2014, 15, 27.	3.0	38
12	Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Frontiers in Molecular Biosciences, 2021, 8, 685440.	1.6	17
13	Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Research, 2021, 49, 3294-3307.	6.5	13
14	Defining COMMD4 as an anti-cancer therapeutic target and prognostic factor in non-small cell lung cancer. British Journal of Cancer, 2020, 123, 591-603.	2.9	13
15	Elevating CDCA3 levels in non-small cell lung cancer enhances sensitivity to platinum-based chemotherapy. Communications Biology, 2021, 4, 638.	2.0	12
16	Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Current Medicinal Chemistry, 2020, 27, 1901-1921.	1.2	10
17	COMMD4 functions with the histone H2A-H2B dimer for the timely repair of DNA double-strand breaks. Communications Biology, 2021, 4, 484.	2.0	8
18	COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers, 2021, 13, 830.	1.7	3

#	Article	IF	CITATIONS
19	COMMD4 Functions with the Histone H2A-H2B Dimer for the Timely Repair of DNA Double Strand Breaks. SSRN Electronic Journal, 0, , .	0.4	3
20	Editorial: Cancer Therapeutics: Targeting DNA Repair Pathways. Frontiers in Molecular Biosciences, 2022, 9, 858514.	1.6	2
21	P1.03-05 COMMD4 in Lung Cancer: Towards a New Therapeutic Target and Diagnostic Biomarker. Journal of Thoracic Oncology, 2019, 14, S419.	0.5	0
22	Abstract PO-031: Aldolase A (ALDOA) is required for efficient DNA double-strand break (DSB) repair. , 2021, , .		0