## Amar Kumar Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911832/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 2013, 38, 1653-1689.                                                                                                   | 11.8 | 866       |
| 2  | Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chemistry and Engineering, 2016, 4, 2899-2916.                                     | 3.2  | 633       |
| 3  | Composites from renewable and sustainable resources: Challenges and innovations. Science, 2018, 362, 536-542.                                                                                                                         | 6.0  | 613       |
| 4  | Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid)<br>(PLA) and kenaf fibers. Composites Science and Technology, 2008, 68, 424-432.                                               | 3.8  | 603       |
| 5  | Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 2020, 22, 5519-5558.                                                                               | 4.6  | 439       |
| 6  | Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid)<br>(PLA) composites: A comparative study. Composites Science and Technology, 2006, 66, 1813-1824.                                  | 3.8  | 432       |
| 7  | Recent Advances in the Application of Natural Fiber Based Composites. Macromolecular Materials and Engineering, 2010, 295, 975-989.                                                                                                   | 1.7  | 343       |
| 8  | A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromolecular Materials and<br>Engineering, 2004, 289, 955-974.                                                                                             | 1.7  | 338       |
| 9  | Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 2021, 117, 101395.                                                                          | 11.8 | 321       |
| 10 | â€~Green' composites from soy based plastic and pineapple leaf fiber: fabrication and properties<br>evaluation. Polymer, 2005, 46, 2710-2721.                                                                                         | 1.8  | 290       |
| 11 | Fully Biodegradable and Biorenewable Ternary Blends from Polylactide,<br>Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties.<br>ACS Applied Materials & Interfaces, 2012, 4, 3091-3101. | 4.0  | 266       |
| 12 | Recent Advances in Biodegradable Nanocomposites. Journal of Nanoscience and Nanotechnology, 2005, 5, 497-526.                                                                                                                         | 0.9  | 251       |
| 13 | "Green―Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl<br>Citrate Plasticizer. Biomacromolecules, 2004, 5, 2281-2288.                                                                      | 2.6  | 244       |
| 14 | A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid). Industrial &<br>Engineering Chemistry Research, 2005, 44, 5593-5601.                                                                                    | 1.8  | 236       |
| 15 | Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 2018, 135, 45726.                                                                                    | 1.3  | 234       |
| 16 | Supertoughened Renewable PLA Reactive Multiphase Blends System: Phase Morphology and Performance. ACS Applied Materials & Interfaces, 2014, 6, 12436-12448.                                                                           | 4.0  | 207       |
| 17 | Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1710-1718.                                                     | 3.8  | 197       |
| 18 | Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and<br>Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic. Biomacromolecules, 2006, 7, 2044-2051.                                                        | 2.6  | 190       |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate<br>(PHBV) bioplastic. Composites Part A: Applied Science and Manufacturing, 2008, 39, 875-886.                                                 | 3.8 | 188       |
| 20 | Polylactide-Based Renewable Green Composites from Agricultural Residues and Their Hybrids.<br>Biomacromolecules, 2010, 11, 1654-1660.                                                                                                        | 2.6 | 186       |
| 21 | Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science, 2006, 101, 3736-3742.                                                                | 1.3 | 180       |
| 22 | Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA<br>Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS Applied Materials &<br>Interfaces, 2015, 7, 11203-11214.           | 4.0 | 170       |
| 23 | Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Composites Part B: Engineering, 2007, 38, 352-359.                                                                | 5.9 | 169       |
| 24 | Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chemistry, 2001, 3, 100-107.                                                                          | 4.6 | 167       |
| 25 | Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Composites Science and Technology, 2008, 68, 3344-3351.                                                        | 3.8 | 163       |
| 26 | Soybean ( <i>Glycine Max</i> ) Leaf Extract Based Green Synthesis of<br>Palladium Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 14-19.                                                                             | 1.0 | 162       |
| 27 | Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces, 2008, 15, 169-191.                                                      | 1.3 | 161       |
| 28 | Modification of Brittle Polylactide by Novel Hyperbranched Polymer-Based Nanostructures.<br>Biomacromolecules, 2007, 8, 2476-2484.                                                                                                           | 2.6 | 160       |
| 29 | Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and<br>Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid). ACS<br>Omega, 2018, 3, 4400-4411.               | 1.6 | 158       |
| 30 | Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Advanced Materials Letters, 2011, 2, 429-434.                      | 0.3 | 158       |
| 31 | Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polymer Engineering and Science, 2005, 45, 487-495.                                                                                                                | 1.5 | 155       |
| 32 | Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay<br>Nanocomposites. Macromolecules, 2004, 37, 9076-9082.                                                                                          | 2.2 | 151       |
| 33 | Study of the Curing Kinetics of Epoxy Resins with Biobased Hardener and Epoxidized Soybean Oil. ACS Sustainable Chemistry and Engineering, 2014, 2, 2111-2116.                                                                               | 3.2 | 150       |
| 34 | Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization:<br>Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.<br>Water Research, 2010, 44, 505-520. | 5.3 | 148       |
| 35 | Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Industrial Crops and Products, 2013, 47, 13-19.                                                                            | 2.5 | 146       |
| 36 | Mechanical Properties of Carbon Nanotubes and Their Polymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1593-1615.                                                                                                   | 0.9 | 145       |

| #  | Article                                                                                                                                                                                                                                                      | IF                | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 37 | Sustainable Green Composites: Value Addition to Agricultural Residues and Perennial Grasses. ACS<br>Sustainable Chemistry and Engineering, 2013, 1, 325-333.                                                                                                 | 3.2               | 141                |
| 38 | Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer, 2004, 45, 7589-7596.                                                                                                           | 1.8               | 138                |
| 39 | Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. Journal of Applied Polymer Science, 2006, 99, 1055-1068.                                                      | 1.3               | 131                |
| 40 | A Study of Carbonized Lignin as an Alternative to Carbon Black. ACS Sustainable Chemistry and Engineering, 2014, 2, 1257-1263.                                                                                                                               | 3.2               | 123                |
| 41 | Preparation and Characterization of Cross-Linked Starch/Poly(vinyl alcohol) Green Films with Low<br>Moisture Absorption. Industrial & Engineering Chemistry Research, 2010, 49, 2176-2185.                                                                   | 1.8               | 117                |
| 42 | Thermo-Physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil, 1. Macromolecular<br>Materials and Engineering, 2004, 289, 629-635.                                                                                                        | 1.7               | 110                |
| 43 | Effect of Maleated Compatibilizer on Performance of PLA/Wheat Strawâ€Based Green Composites.<br>Macromolecular Materials and Engineering, 2011, 296, 710-718.                                                                                                | 1.7               | 110                |
| 44 | Studies on durability of sustainable biobased composites: a review. RSC Advances, 2020, 10, 17955-17999.                                                                                                                                                     | 1.7               | 110                |
| 45 | Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate),<br>(PHBV) green composites: A comparison with traditional polypropylene composites. Composites<br>Science and Technology, 2011, 71, 653-657.                   | 3.8               | 109                |
| 46 | The Effects of Process Engineering on the Performance of PLA and PHBV Blends. Macromolecular Materials and Engineering, 2011, 296, 719-728.                                                                                                                  | 1.7               | 108                |
| 47 | New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate)<br>(PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and<br>performance evaluation. Industrial Crops and Products, 2013, 42, 461-468. | 2.5               | 107                |
| 48 | Green Approaches To Engineer Tough Biobased Epoxies: A Review. ACS Sustainable Chemistry and Engineering, 2017, 5, 9528-9541.                                                                                                                                | 3.2               | 100                |
| 49 | Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive<br>Extrusion and Performance Evaluation. Journal of Polymers and the Environment, 2014, 22, 336-349.                                                     | 2.4               | 99                 |
| 50 | A New Biodegradable Flexible Composite Sheet from Poly(lactic acid)/Poly( <i>ε</i> aprolactone)<br>Blends and Microâ€Talc. Macromolecular Materials and Engineering, 2010, 295, 750-762.                                                                     | 1.7               | 97                 |
| 51 | Renewable resource based "all green composites―from kenaf biofiber and poly(furfuryl alcohol)<br>bioresin. Industrial Crops and Products, 2013, 41, 94-101.                                                                                                  | 2.5               | 93                 |
| 52 | Green Composites from Residual Microalgae Biomass and Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1<br>Engineering, 2015, 3, 614-624.                                                                                                                | 147 Td (ad<br>3.2 | ipate- <i>co91</i> |
| 53 | Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Composites Part B: Engineering, 2017, 118, 116-124.                                                                                 | 5.9               | 89                 |
| 54 | Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green                                                                                                                                                                     | 4.8               | 87                 |

Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor. Bioresource Technology, 2010, 101, 8489-8491. 54

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influence of Plasticizers on Thermal and Mechanical Properties and Morphology of Soy-Based<br>Bioplastics. Industrial & Engineering Chemistry Research, 2006, 45, 7491-7496.                              | 1.8  | 86        |
| 56 | Preparation of an Electric Double Layer Capacitor (EDLC) Using <i>Miscanthus</i> -Derived Biocarbon.<br>ACS Sustainable Chemistry and Engineering, 2018, 6, 318-324.                                      | 3.2  | 86        |
| 57 | Advances in the Properties of Polylactides Based Materials: A Review. Journal of Biobased Materials and Bioenergy, 2007, 1, 191-209.                                                                      | 0.1  | 86        |
| 58 | Thermo-Physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil, 2. Macromolecular<br>Materials and Engineering, 2004, 289, 636-641.                                                     | 1.7  | 84        |
| 59 | A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose, 2009, 16, 783-793.   | 2.4  | 83        |
| 60 | Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products, 2015, 78, 141-147.                    | 2.5  | 83        |
| 61 | Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. BioResources, 2016, 11, .                                                                           | 0.5  | 83        |
| 62 | Biobased epoxy/clay nanocomposites as a new matrix for CFRP. Composites Part A: Applied Science and Manufacturing, 2006, 37, 54-62.                                                                       | 3.8  | 81        |
| 63 | Novel biobased nanocomposites from functionalized vegetable oil and organically-modified layered silicate clay. Polymer, 2005, 46, 445-453.                                                               | 1.8  | 80        |
| 64 | Injection Molded Sustainable Biocomposites From Poly(butylene succinate) Bioplastic and Perennial Grass. ACS Sustainable Chemistry and Engineering, 2015, 3, 2767-2776.                                   | 3.2  | 80        |
| 65 | Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures.<br>Materials Science in Semiconductor Processing, 2018, 80, 143-161.                                         | 1.9  | 80        |
| 66 | Biocomposites with Size-Fractionated Biocarbon: Influence of the Microstructure on Macroscopic Properties. ACS Omega, 2016, 1, 636-647.                                                                   | 1.6  | 79        |
| 67 | Fabrication of conductive Lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes. Carbon, 2019, 147, 262-275.                                                                    | 5.4  | 79        |
| 68 | Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .                                                                                                                                          | 11.8 | 78        |
| 69 | Biodegradable toughened polymers from renewable resources: blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chemistry, 2006, 8, 206-213.                    | 4.6  | 77        |
| 70 | Impact of interfacial adhesion on the microstructure and property variations of biocarbons<br>reinforced nylon 6 biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 98,<br>32-44. | 3.8  | 77        |
| 71 | Carbon Coated LiMnPO[sub 4] Nanorods for Lithium Batteries. Journal of the Electrochemical Society, 2011, 158, A227.                                                                                      | 1.3  | 76        |

Thermoâ  $\in$  mechanical characterization of bioblends from polylactide and poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,62 Td (adi 1.7  $\times$  1.7

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Isolation of Cellulose Nanoparticles from Sesame Husk. Industrial & Engineering Chemistry<br>Research, 2011, 50, 871-876.                                                                                                                      | 1.8 | 75        |
| 74 | Load-bearing natural fiber composite cellular beams and panels. Composites Part A: Applied Science and Manufacturing, 2004, 35, 645-656.                                                                                                       | 3.8 | 73        |
| 75 | Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties.<br>Journal of Applied Polymer Science, 2010, 118, 143-151.                                                                                   | 1.3 | 73        |
| 76 | lodine Treatment of Lignin–Cellulose Acetate Electrospun Fibers: Enhancement of Green Fiber<br>Carbonization. ACS Sustainable Chemistry and Engineering, 2015, 3, 33-41.                                                                       | 3.2 | 73        |
| 77 | Effect of compatibilizer and fillers on the properties of injection molded ligninâ€based hybrid green composites. Journal of Applied Polymer Science, 2013, 127, 4110-4121.                                                                    | 1.3 | 72        |
| 78 | Processability and Biodegradability Evaluation of Composites from Poly(butylene succinate) (PBS)<br>Bioplastic and Biofuel Co-products from Ontario. Journal of Polymers and the Environment, 2014, 22,<br>209-218.                            | 2.4 | 72        |
| 79 | Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Engineering Au, 2021, 1, 7-38.                                                                    | 2.3 | 72        |
| 80 | Biobased Ternary Blends of Lignin, Poly(Lactic Acid), and Poly(Butylene Adipate-co-Terephthalate): The<br>Effect of Lignin Heterogeneity on Blend Morphology and Compatibility. Journal of Polymers and the<br>Environment, 2014, 22, 439-448. | 2.4 | 70        |
| 81 | Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. Journal of Applied Polymer Science, 2017, 134, .                                                                                        | 1.3 | 69        |
| 82 | Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin.<br>Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 698-704.                                                                    | 2.4 | 68        |
| 83 | Poly(glycerol- <i>co</i> -diacids) Polyesters: From Glycerol Biorefinery to Sustainable Engineering<br>Applications, A Review. ACS Sustainable Chemistry and Engineering, 2018, 6, 5681-5693.                                                  | 3.2 | 67        |
| 84 | Bio-poly(butylene succinate) and Its Composites with Grape Pomace: Mechanical Performance and<br>Thermal Properties. ACS Omega, 2018, 3, 15205-15216.                                                                                          | 1.6 | 67        |
| 85 | Toughened Sustainable Green Composites from Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)<br>Based Ternary Blends and Miscanthus Biofiber. ACS Sustainable Chemistry and Engineering, 2014, 2,<br>2345-2354.                           | 3.2 | 66        |
| 86 | Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1428-1433.                                                             | 3.8 | 65        |
| 87 | Extruded Biodegradable Cast Films from Polyhydroxyalkanoate and Thermoplastic Starch Blends:<br>Fabrication and Characterization. Macromolecular Materials and Engineering, 2007, 292, 1218-1228.                                              | 1.7 | 65        |
| 88 | Thermal, Mechanical and Rheological Behavior of Poly(lactic acid)/Talc Composites. Journal of Polymers and the Environment, 2012, 20, 1027-1037.                                                                                               | 2.4 | 65        |
| 89 | Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications: Compression moulding vs. cast film extrusion. Composites Part B: Engineering, 2020, 198, 108141.          | 5.9 | 65        |
| 90 | Injection Molded Glass Fiber Reinforced Poly(trimethylene terephthalate) Composites:Â Fabrication and<br>Properties Evaluation. Industrial & Engineering Chemistry Research, 2005, 44, 857-862.                                                | 1.8 | 63        |

| #   | Article                                                                                                                                                                                                        | IF               | CITATIONS                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|
| 91  | Green Process for Impregnation of Silver Nanoparticles into Microcrystalline Cellulose and Their<br>Antimicrobial Bionanocomposite Films. Journal of Biomaterials and Nanobiotechnology, 2012, 03,<br>371-376. | 1.0              | 63                           |
| 92  | Biodegradable green composites from bioethanol co-product and poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10                                                                                                    | Tf 50 702        | 2 Td (adipate-               |
| 93  | Analysis of Porous Electrospun Fibers from Poly( <scp>l</scp> -lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5<br>Engineering, 2014, 2, 1976-1982.                                                          | 0 667 Td<br>3.2  | (acid)/Poly(3<br>63          |
| 94  | Development of Toughened Blends of Poly(lactic acid) and Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6<br>Performance Evaluation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6576-6589.       | 27 Td (ac<br>3.2 | lipate- <i>co&lt;<br/>63</i> |
| 95  | Electrospinning of aqueous lignin/poly(ethylene oxide) complexes. Journal of Applied Polymer Science, 2015, 132, .                                                                                             | 1.3              | 62                           |
| 96  | Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications. Royal Society Open Science, 2018, 5, 171970.                 | 1.1              | 61                           |
| 97  | Hybrid bio-composite from talc, wood fiber and bioplastic: Fabrication and characterization.<br>Composites Part A: Applied Science and Manufacturing, 2010, 41, 304-312.                                       | 3.8              | 60                           |
| 98  | Influence of processing parameters on the impact strength of biocomposites: A statistical approach.<br>Composites Part A: Applied Science and Manufacturing, 2016, 83, 120-129.                                | 3.8              | 60                           |
| 99  | Graphitization of <i>Miscanthus</i> grass biocarbon enhanced by <i>in situ</i> generated FeCo<br>nanoparticles. Green Chemistry, 2018, 20, 2269-2278.                                                          | 4.6              | 60                           |
| 100 | Thermally Stable Pyrolytic Biocarbon as an Effective and Sustainable Reinforcing Filler for Polyamide Bio-composites Fabrication. Journal of Polymers and the Environment, 2018, 26, 3574-3589.                | 2.4              | 60                           |
| 101 | Chopped Industrial Hemp Fiber Reinforced Cellulosic Plastic Biocomposites:Â Thermomechanical and<br>Morphological Properties. Industrial & Engineering Chemistry Research, 2004, 43, 4883-4888.                | 1.8              | 58                           |
| 102 | Biological Synthesis of Silver Nanoparticles Using Glycine max (Soybean) Leaf Extract: An<br>Investigation on Different Soybean Varieties. Journal of Nanoscience and Nanotechnology, 2009, 9,<br>6828-33.     | 0.9              | 57                           |
| 103 | Studies on recyclability of polyhydroxybutyrateâ€ <i>co</i> â€valerate bioplastic: Multiple melt processing<br>and performance evaluations. Journal of Applied Polymer Science, 2012, 125, E324.               | 1.3              | 57                           |
| 104 | Biodegradable Composites Developed from PBAT/PLA Binary Blends and Silk Powder: Compatibilization and Performance Evaluation. ACS Omega, 2018, 3, 12412-12421.                                                 | 1.6              | 57                           |
| 105 | Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass. Science of the Total Environment, 2016, 550, 241-247.                                                      | 3.9              | 56                           |
| 106 | Biocarbon from peanut hulls and their green composites with biobased poly(trimethylene) Tj ETQq0 0 0 rgBT /Ov                                                                                                  | erlock 10<br>1.6 | Tf 50 142 Td                 |

| 107 | Hybrid biofiber-based composites for structural cellular plates. Composites Part A: Applied Science and Manufacturing, 2005, 36, 581-593. | 3.8 | 52 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 108 | Green polyurethane nanocomposites from soy polyol and bacterial cellulose. Journal of Materials<br>Science, 2013, 48, 2167-2175.          | 1.7 | 52 |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Functionalization of lignin: Fundamental studies on aqueous graft copolymerization with vinyl acetate. Industrial Crops and Products, 2013, 46, 191-196.                                                                                 | 2.5 | 52        |
| 110 | Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 113, 169-175.                                                     | 2.5 | 52        |
| 111 | Biocomposite consisting of miscanthus fiber and biodegradable binary blend matrix: compatibilization and performance evaluation. RSC Advances, 2017, 7, 27538-27548.                                                                     | 1.7 | 52        |
| 112 | Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): morphology evolution and rheological behaviour. RSC Advances, 2018, 8, 15709-15724.                                                            | 1.7 | 52        |
| 113 | Effect of Clay and Alumina-Nanowhisker Reinforcements on the Mechanical Properties of<br>Nanocomposites from Biobased Epoxy:Â A Comparative Study. Industrial & Engineering Chemistry<br>Research, 2004, 43, 7001-7009.                  | 1.8 | 51        |
| 114 | Synthesis of Glycerol-Based Biopolyesters as Toughness Enhancers for Polylactic Acid Bioplastic through Reactive Extrusion. ACS Omega, 2016, 1, 1284-1295.                                                                               | 1.6 | 51        |
| 115 | Sustainable composites from poly(3-hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chemistry, 2020, 22, 3906-3916.                                                                                                      | 4.6 | 51        |
| 116 | Physicomechanical and Thermal Properties of Jute-Nanofiber-Reinforced Biocopolyester Composites.<br>Industrial & Engineering Chemistry Research, 2010, 49, 2775-2782.                                                                    | 1.8 | 50        |
| 117 | Physicochemical analysis of apple and grape pomaces. BioResources, 2019, 14, 3210-3230.                                                                                                                                                  | 0.5 | 49        |
| 118 | Super Toughened Poly(lactic acid)-Based Ternary Blends via Enhancing Interfacial Compatibility. ACS<br>Omega, 2019, 4, 1955-1968.                                                                                                        | 1.6 | 48        |
| 119 | Ocean plastics: environmental implications and potential routes for mitigation – a perspective. RSC Advances, 2021, 11, 21447-21462.                                                                                                     | 1.7 | 48        |
| 120 | Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. Journal of Applied Polymer Science, 2017, 134, .                                                                                                  | 1.3 | 47        |
| 121 | Fermented Soymeals and Their Reactive Blends with Poly(butylene adipate- <i>co</i> -terephthalate) in<br>Engineering Biodegradable Cast Films for Sustainable Packaging. ACS Sustainable Chemistry and<br>Engineering, 2016, 4, 782-793. | 3.2 | 46        |
| 122 | Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites. Polymer Degradation and Stability, 2017, 139, 76-88.                                                                                                         | 2.7 | 46        |
| 123 | Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. RSC Advances, 2020, 10, 36058-36089.                                                                                              | 1.7 | 46        |
| 124 | Fruit waste valorization for biodegradable biocomposite applications: A review. BioResources, 2019, 14, 10047-10092.                                                                                                                     | 0.5 | 46        |
| 125 | Graft copolymerization of acrylonitrile onto acetylated jute fibers. Journal of Applied Polymer Science, 1989, 37, 1171-1181.                                                                                                            | 1.3 | 44        |
| 126 | Slow pyrolysis of bio-oil and studies on chemical and physical properties of the resulting new bio-carbon. Journal of Cleaner Production, 2018, 172, 2748-2758.                                                                          | 4.6 | 44        |

| #   | Article                                                                                                                                                                                                                                | IF                 | CITATIONS           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 127 | Development of Biobased Unsaturated Polyester Containing Functionalized Linseed Oil. Industrial<br>& Engineering Chemistry Research, 2006, 45, 1014-1018.                                                                              | 1.8                | 43                  |
| 128 | Bio-based unsaturated polyester/layered silicate nanocomposites: Characterization and thermo-physical properties. Composites Part A: Applied Science and Manufacturing, 2009, 40, 540-547.                                             | 3.8                | 43                  |
| 129 | Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate)<br>Blends via Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2019, 7, 14460-14470.                            | 3.2                | 43                  |
| 130 | Studies on the dimensional stability and mechanical properties of nanobiocomposites from polyamide<br>6-filled with biocarbon and nanoclay hybrid systems. Composites Part A: Applied Science and<br>Manufacturing, 2020, 129, 105695. | 3.8                | 43                  |
| 131 | Sustainable green composites from biodegradable plastics blend and natural fibre with balanced performance: Synergy of nano-structured blend and reactive extrusion. Composites Science and Technology, 2020, 200, 108369.             | 3.8                | 43                  |
| 132 | Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons.<br>Composites Part B: Engineering, 2021, 209, 108553.                                                                               | 5.9                | 43                  |
| 133 | Novel Biocomposites from Native Grass and Soy Based Bioplastic:  Processing and Properties<br>Evaluation. Industrial & Engineering Chemistry Research, 2005, 44, 7105-7112.                                                            | 1.8                | 42                  |
| 134 | Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: Tensile properties, efficiency, and limits. Composites Part A: Applied Science and Manufacturing, 2009, 40, 394-403.                                    | 3.8                | 42                  |
| 135 | Mechanical, Chemical, and Physical Properties of Wood and Perennial Grass Biochars for Possible<br>Composite Application. BioResources, 2015, 11, .                                                                                    | 0.5                | 42                  |
| 136 | Biodegradable biocomposites from poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) and miscanthus:<br>Preparation, compatibilization, and performance evaluation. Journal of Applied Polymer Science, 2017,<br>134, 45448.            | 1.3                | 42                  |
| 137 | Characterization of Chicken Feather Biocarbon for Use in Sustainable Biocomposites. Frontiers in<br>Materials, 2020, 7, .                                                                                                              | 1.2                | 42                  |
| 138 | Novel Biodegradable Cast Film from Carbon Dioxide Based Copolymer and Poly(Lactic Acid). Journal of<br>Polymers and the Environment, 2016, 24, 23-36.                                                                                  | 2.4                | 41                  |
| 139 | Influence of epoxidized natural rubber on the phase structure and toughening behavior of biocarbon reinforced nylon 6 biocomposites. RSC Advances, 2017, 7, 8727-8739.                                                                 | 1.7                | 40                  |
| 140 | Miscibility and Performance Evaluation of Biocomposites Made from Polypropylene/Poly(lactic) Tj ETQq0 0 0 rgB <sup>-</sup><br>Omega, 2017, 2, 6446-6454.                                                                               | [ /Overlocl<br>1.6 | t 10 Tf 50 22<br>40 |
| 141 | Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization. Journal of Applied Polymer Science, 2018, 135, 46449.                    | 1.3                | 40                  |
| 142 | Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: Effect of particle size<br>and morphology on performance of the biocomposites. Composites Part A: Applied Science and<br>Manufacturing, 2018, 112, 1-10. | 3.8                | 40                  |
| 143 | Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance. Industrial Crops and Products, 2019, 132, 497-510.                                                    | 2.5                | 40                  |
| 144 | A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in<br>biocomposites uses: Current development and future opportunity. Renewable and Sustainable Energy<br>Reviews, 2021, 152, 111666.          | 8.2                | 40                  |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Biodegradability and Compostability of Lignocellulosic Based Composite Materials. Journal of Renewable Materials, 2013, 1, 253-272.                                                                                         | 1.1 | 39        |
| 146 | Biobased Poly(ethylene terephthalate)/Poly(lactic acid) Blends Tailored with Epoxide Compatibilizers.<br>ACS Omega, 2018, 3, 11759-11769.                                                                                   | 1.6 | 39        |
| 147 | Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Advances, 2021, 11, 36398-36438.                                                          | 1.7 | 39        |
| 148 | Novel materials from unsaturated polyester resin/styrene/tung oil blends with high impact strengths and enhanced mechanical properties. Journal of Applied Polymer Science, 2011, 119, 2174-2182.                           | 1.3 | 38        |
| 149 | The Effect of Mold Temperature on the Performance of Injection Molded Poly(lactic acid)â€Based<br>Bioplastic. Macromolecular Materials and Engineering, 2013, 298, 981-990.                                                 | 1.7 | 38        |
| 150 | Microwave Synthesis and Melt Blending of Glycerol Based Toughening Agent with Poly(lactic acid).<br>ACS Sustainable Chemistry and Engineering, 2016, 4, 2142-2149.                                                          | 3.2 | 38        |
| 151 | <i>Miscanthus</i> grass-derived carbon dots to selectively detect Fe <sup>3+</sup> ions. RSC<br>Advances, 2019, 9, 8628-8637.                                                                                               | 1.7 | 38        |
| 152 | Bio-based polymer nanocomposites from UPE/EML blends and nanoclay: Development, experimental characterization and limits to synergistic performance. Composites Part A: Applied Science and Manufacturing, 2011, 42, 41-49. | 3.8 | 37        |
| 153 | Carbonized Lignin as Sustainable Filler in Biobased Poly(trimethylene terephthalate) Polymer for<br>Injection Molding Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 102-110.                            | 3.2 | 37        |
| 154 | Novel biocomposites from biobased PC/PLA blend matrix system for durable applications. Composites<br>Part B: Engineering, 2017, 130, 158-166.                                                                               | 5.9 | 37        |
| 155 | Thermal and Mechanical Properties of the Biocomposites of Miscanthus Biocarbon and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV). Polymers, 2020, 12, 1300.                                                           | 2.0 | 37        |
| 156 | Hybrid biocomposites from polypropylene, sustainable biocarbon and graphene nanoplatelets.<br>Scientific Reports, 2020, 10, 10714.                                                                                          | 1.6 | 37        |
| 157 | Novel Compatibilized Nylon-Based Ternary Blends with Polypropylene and Poly(lactic acid):<br>Fractionated Crystallization Phenomena and Mechanical Performance. ACS Omega, 2018, 3, 2845-2854.                              | 1.6 | 36        |
| 158 | Static and Dynamic Mechanical Properties of Vinylester Resin Matrix Composites Filled with Fly Ash.<br>Macromolecular Materials and Engineering, 2006, 291, 784-792.                                                        | 1.7 | 35        |
| 159 | Electrospinning highly oriented and crystalline poly(lactic acid) fiber mats. Journal of Materials<br>Science, 2014, 49, 2430-2441.                                                                                         | 1.7 | 35        |
| 160 | Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate)<br>(PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polymer Testing, 2018, 65, 420-428.                   | 2.3 | 35        |
| 161 | Blends of polylactic acid with thermoplastic copolyester elastomer: Effect of functionalized terpolymer type on reactive toughening. Polymer Engineering and Science, 2018, 58, 280-290.                                    | 1.5 | 35        |
| 162 | Sustainable Biocomposites from Poly(butylene succinate) and Apple Pomace: A Study on Compatibilization Performance. Waste and Biomass Valorization, 2020, 11, 3775-3787.                                                    | 1.8 | 35        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A comparative life-cycle assessment of talc- and biochar-reinforced composites for lightweight automotive parts. Clean Technologies and Environmental Policy, 2020, 22, 639-649.                                                     | 2.1 | 35        |
| 164 | Biodegradable Green Composites from Distiller's Dried Grains with Solubles (DDGS) and a<br>Polyhydroxy(butyrateâ€ <i>co</i> â€valerate) (PHBV)â€Based Bioplastic. Macromolecular Materials and<br>Engineering, 2011, 296, 1035-1045. | 1.7 | 34        |
| 165 | Biodegradable Blends From Plasticized Soy Meal, Polycaprolactone, and Poly(butylene succinate).<br>Macromolecular Materials and Engineering, 2012, 297, 455-463.                                                                     | 1.7 | 34        |
| 166 | Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative.<br>Journal of Applied Polymer Science, 2016, 133, .                                                                             | 1.3 | 34        |
| 167 | Comparative study of the extrinsic properties of poly(lactic acid)-based biocomposites filled with talc <i>versus</i> sustainable biocarbon. RSC Advances, 2019, 9, 6752-6761.                                                       | 1.7 | 34        |
| 168 | Toughening of Biodegradable<br>Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)/Poly(ε-caprolactone) Blends by In Situ Reactive<br>Compatibilization. ACS Omega, 2020, 5, 14900-14910.                                          | 1.6 | 34        |
| 169 | Diameter-tuning of electrospun cellulose acetate fibers: A Box–Behnken design (BBD) study.<br>Carbohydrate Polymers, 2013, 92, 1100-1106.                                                                                            | 5.1 | 33        |
| 170 | Sustainable Biocomposites from Pyrolyzed Grass and Toughened Polypropylene: Structure–Property<br>Relationships. ACS Omega, 2017, 2, 2191-2199.                                                                                      | 1.6 | 33        |
| 171 | Sustainable biobased blends of poly(lactic acid) (PLA) and poly(glycerol succinate-co-maleate) (PCSMA) with balanced performance prepared by dynamic vulcanization. RSC Advances, 2017, 7, 38594-38603.                              | 1.7 | 33        |
| 172 | Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials. Composites Part B: Engineering, 2020, 200, 108319.                                     | 5.9 | 33        |
| 173 | Processing, Carbonization, and Characterization of Lignin Based Electrospun Carbon Fibers: A Review.<br>Frontiers in Energy Research, 2020, 8, .                                                                                     | 1.2 | 33        |
| 174 | Surface modification of coir fibers I: studies on graft copolymerization of methyl methacrylate on to chemically modified coir fibers. Polymers for Advanced Technologies, 1999, 10, 336-344.                                        | 1.6 | 32        |
| 175 | Novel Talc-Filled Biodegradable Bacterial Polyester Composites. Industrial & Engineering<br>Chemistry Research, 2006, 45, 7497-7503.                                                                                                 | 1.8 | 32        |
| 176 | Preparation and Properties of Vinylester Resin/Clay Nanocomposites. Macromolecular Materials and Engineering, 2006, 291, 1513-1520.                                                                                                  | 1.7 | 32        |
| 177 | Biocomposites From Switchgrass and Lignin Hybrid and Poly(butylene succinate) Bioplastic: Studies<br>on Reactive Compatibilization and Performance Evaluation. Macromolecular Materials and<br>Engineering, 2014, 299, 178-189.      | 1.7 | 32        |
| 178 | The effect of natural fillers on the marine biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Scientific Reports, 2021, 11, 911.                                                                      | 1.6 | 32        |
| 179 | Characterization and Application in Biocomposites of Residual Microalgal Biomass Generated in Third Generation Biodiesel. Journal of Polymers and the Environment, 2013, 21, 944-951.                                                | 2.4 | 31        |
| 180 | Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass and Bioenergy, 2013, 55, 251-259.                                                          | 2.9 | 31        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A New Approach to Supertough Poly(lactic acid): A High Temperature Reactive Blending.<br>Macromolecular Materials and Engineering, 2016, 301, 1443-1453.                                                             | 1.7 | 31        |
| 182 | Tailoring the toughness of sustainable polymer blends from biodegradable plastics via morphology transition observed by atomic force microscopy. Polymer Degradation and Stability, 2020, 173, 109066.               | 2.7 | 31        |
| 183 | Novel sustainable biobased flame retardant from functionalized vegetable oil for enhanced flame retardancy of engineering plastic. Scientific Reports, 2019, 9, 15971.                                               | 1.6 | 30        |
| 184 | Hierarchical cellular designs for load-bearing biocomposite beams and plates. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 178-187.             | 2.6 | 29        |
| 185 | Value-Added New Materials from Byproduct of Corn Based Ethanol Industries:Â Blends of Plasticized<br>Corn Gluten Meal and Poly(ε-caprolactone). Industrial & Engineering Chemistry Research, 2006, 45,<br>6147-6152. | 1.8 | 29        |
| 186 | Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications. RSC Advances, 2016, 6, 105094-105104.                                                                       | 1.7 | 29        |
| 187 | Compatibilization of toughened polypropylene/biocarbon biocomposites: A full factorial design optimization of mechanical properties. Polymer Testing, 2017, 61, 364-372.                                             | 2.3 | 29        |
| 188 | Electrospinning Process and Structure Relationship of Biobased Poly(butylene succinate) for<br>Nanoporous Fibers. ACS Omega, 2018, 3, 5547-5557.                                                                     | 1.6 | 29        |
| 189 | Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: Factorial design optimization of mechanical properties. Materials and Design, 2016, 110, 581-591.    | 3.3 | 28        |
| 190 | Biobased polymer blends of poly(trimethylene terephthalate) and high density polyethylene. Materials<br>and Design, 2016, 90, 984-990.                                                                               | 3.3 | 28        |
| 191 | Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate)<br>blends. RSC Advances, 2018, 8, 27709-27724.                                                                 | 1.7 | 28        |
| 192 | Impacts of COVID-19 Outbreak on the Municipal Solid Waste Management: Now and beyond the Pandemic. ACS Environmental Au, 2021, 1, 32-45.                                                                             | 3.3 | 28        |
| 193 | A Solvent Free Graft Copolymerization of Maleic Anhydride onto Cellulose Acetate Butyrate<br>Bioplastic by Reactive Extrusion. Macromolecular Materials and Engineering, 2006, 291, 90-95.                           | 1.7 | 27        |
| 194 | Biobased blends of poly(propylene carbonate) and poly(hydroxybutyrateâ€coâ€hydroxyvalerate):<br>Fabrication and characterization. Journal of Applied Polymer Science, 2017, 134, .                                   | 1.3 | 27        |
| 195 | Microplastics in ecosystems: their implications and mitigation pathways. Environmental Science Advances, 2022, 1, 9-29.                                                                                              | 1.0 | 27        |
| 196 | A Study On The Electrospinning Behaviour And Nanofibre Morphology Of Anionically Charged Lignin.<br>Advanced Materials Letters, 2012, 3, 476-480.                                                                    | 0.3 | 26        |
| 197 | Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic. Journal of Materials Science, 2013, 48, 6025-6038.                              | 1.7 | 26        |
| 198 | Performance Evaluation of Biofibers and Their Hybrids as Reinforcements in Bioplastic Composites.<br>Macromolecular Materials and Engineering, 2013, 298, 779-788.                                                   | 1.7 | 26        |

| #   | Article                                                                                                                                                                                                                     | IF              | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 199 | Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene. Journal of Applied Polymer Science, 2017, 134, .                                                                | 1.3             | 26                |
| 200 | Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication. Scientific Reports, 2020, 10, 11804.                            | 1.6             | 26                |
| 201 | Super-tough sustainable biobased composites from polylactide bioplastic and lignin for bio-elastomer application. Polymer, 2021, 212, 123153.                                                                               | 1.8             | 26                |
| 202 | Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. Journal of Materials Science, 2012, 47, 5158-5168.                                          | 1.7             | 25                |
| 203 | A New Biodegradable Injection Moulded Bioplastic from Modified Soy Meal and Poly (butylene) Tj ETQq1 1 0.784<br>Environment, 2013, 21, 615-622.                                                                             | 314 rgBT<br>2.4 | Overlock 10<br>25 |
| 204 | Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene. Journal of Applied Polymer Science, 2016, 133, .                                                                | 1.3             | 25                |
| 205 | Environmental and economic prospects of biomaterials in the automotive industry. Clean<br>Technologies and Environmental Policy, 2019, 21, 1535-1548.                                                                       | 2.1             | 25                |
| 206 | Injection Molded Novel Biocomposites from Polypropylene and Sustainable Biocarbon. Molecules, 2019, 24, 4026.                                                                                                               | 1.7             | 25                |
| 207 | Strategy To Improve Printability of Renewable Resource-Based Engineering Plastic Tailored for FDM Applications. ACS Omega, 2019, 4, 20297-20307.                                                                            | 1.6             | 25                |
| 208 | Thermoplastics from Soy Protein: A Review on Processing, Blends and Composites. Journal of Biobased<br>Materials and Bioenergy, 2010, 4, 298-316.                                                                           | 0.1             | 25                |
| 209 | Comparative compostability and biodegradation studies of various components of green composites and their blends in simulated aerobic composting bioreactor. International Journal of Plastics Technology, 2010, 14, 45-50. | 2.9             | 24                |
| 210 | Sustainable biocarbon as an alternative of traditional fillers for poly(butylene terephthalate)â€based<br>composites: Thermoâ€oxidative aging and durability. Journal of Applied Polymer Science, 2019, 136, 47722.         | 1.3             | 24                |
| 211 | Sustainable Hydrophobic and Moisture-Resistant Coating Derived from Downstream Corn Oil. ACS Sustainable Chemistry and Engineering, 2019, 7, 8766-8774.                                                                     | 3.2             | 24                |
| 212 | Modification of Soy Protein Plastic with Functional Monomer with Reactive Extrusion. Journal of Polymers and the Environment, 2008, 16, 177-182.                                                                            | 2.4             | 23                |
| 213 | Optimization of tensile properties thermoplastic blends from soy and biodegradable polyesters:<br>Taguchi design of experiments approach. Journal of Materials Science, 2012, 47, 2591-2599.                                | 1.7             | 23                |
| 214 | Synergistic thermo-oxidative maleation of PA11 as compatibilization strategy for PA6 and PBT blend.<br>Polymer, 2019, 179, 121594.                                                                                          | 1.8             | 23                |
| 215 | Evaluation of the life cycle of an automotive component produced from biocomposite. Journal of Cleaner Production, 2020, 273, 123051.                                                                                       | 4.6             | 23                |
| 216 | Sustainable PHBV/Cellulose Acetate Blends: Effect of a Chain Extender and a Plasticizer. ACS Omega, 2020, 5, 14221-14231.                                                                                                   | 1.6             | 23                |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Effect of Accelerated Weathering on Biocomposites Processed by SMC and Compression Molding.<br>Journal of Polymers and the Environment, 2006, 14, 359-368.                                                              | 2.4 | 22        |
| 218 | A Study of Dynamic Mechanical and Thermal Behavior of Starch/Poly(vinylalcohol) Based Films.<br>Journal of Polymers and the Environment, 2009, 17, 49-55.                                                               | 2.4 | 22        |
| 219 | Mechanical Performance of Soyâ€Hullâ€Reinforced Bioplastic Green Composites: A Comparison with<br>Polypropylene Composites. Macromolecular Materials and Engineering, 2012, 297, 184-194.                               | 1.7 | 22        |
| 220 | A statistical approach to develop biocomposites from epoxy resin, poly(furfuryl alcohol),<br>poly(propylene carbonate), and biochar. Journal of Applied Polymer Science, 2017, 134, 45307.                              | 1.3 | 22        |
| 221 | Evolution of drinking straws and their environmental, economic and societal implications. Journal of Cleaner Production, 2021, 316, 128234.                                                                             | 4.6 | 22        |
| 222 | Characterization and Thermophysical Properties of Unsaturated Polyester-Layered Silicate Nanocomposites. Journal of Nanoscience and Nanotechnology, 2006, 6, 464-471.                                                   | 0.9 | 21        |
| 223 | Thermal and electrical behavior of vinylester resin matrix composites filled with fly ash particles.<br>Polymer Composites, 2008, 29, 58-62.                                                                            | 2.3 | 21        |
| 224 | Renewableâ€Resourceâ€Based Green Blends from Poly(furfuryl alcohol) Bioresin and Lignin.<br>Macromolecular Materials and Engineering, 2014, 299, 552-559.                                                               | 1.7 | 21        |
| 225 | Exploring the Effect of Poly(propylene carbonate) Polyol in a Biobased Epoxy Interpenetrating<br>Network. ACS Omega, 2017, 2, 611-617.                                                                                  | 1.6 | 21        |
| 226 | Novel tunable super-tough materials from biodegradable polymer blends: nano-structuring through reactive extrusion. RSC Advances, 2019, 9, 2836-2847.                                                                   | 1.7 | 21        |
| 227 | Underutilized Agricultural Co-Product as a Sustainable Biofiller for Polyamide 6,6: Effect of Carbonization Temperature. Molecules, 2020, 25, 1455.                                                                     | 1.7 | 21        |
| 228 | Biocomposites from biobased polyamide 4,10 and waste corn cob based biocarbon. Composites Part A:<br>Applied Science and Manufacturing, 2021, 145, 106340.                                                              | 3.8 | 21        |
| 229 | Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods. Ionics, 2013, 19, 461-469.                                                                                                   | 1.2 | 20        |
| 230 | Comparison in composite performance after thermooxidative aging of injection molded polyamide 6<br>with glass fiber, talc, and a sustainable biocarbon filler. Journal of Applied Polymer Science, 2020, 137,<br>48618. | 1.3 | 20        |
| 231 | Mechanical optimization of virgin and recycled poly(ethylene terephthalate) biocomposites with sustainable biocarbon through a factorial design. Results in Materials, 2020, 5, 100060.                                 | 0.9 | 20        |
| 232 | Effect of jute fibers on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 2021, 28, 5513.                                                                 | 2.4 | 20        |
| 233 | Material property characterization of co-products from biofuel industries: Potential uses in value-added biocomposites. Biomass and Bioenergy, 2012, 37, 88-96.                                                         | 2.9 | 19        |
| 234 | Green Composites From Soyâ€Based Biopolyurethane With Microcrystalline Cellulose. Macromolecular<br>Materials and Engineering, 2013, 298, 412-418.                                                                      | 1.7 | 19        |

| #   | Article                                                                                                                                                                                                                                                                                         | IF               | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 235 | Injection-moulded biocomposites from polylactic acid (PLA) and recycled carbon fibre. Journal of<br>Thermoplastic Composite Materials, 2014, 27, 1286-1300.                                                                                                                                     | 2.6              | 19                 |
| 236 | Microscopic, structural, and electrical characterization of the carbonaceous materials synthesized from various lignin feedstocks. Journal of Applied Polymer Science, 2015, 132, .                                                                                                             | 1.3              | 19                 |
| 237 | Statistical analysis of the effects of carbonization parameters on the structure of carbonized electrospun organosolv lignin fibers. Journal of Applied Polymer Science, 2016, 133, .                                                                                                           | 1.3              | 19                 |
| 238 | Renewable Resource Based Biocomposites from Coproduct of Dry Milling Corn Ethanol Industry and Castor Oil Based Biopolyurethanes. Journal of Biobased Materials and Bioenergy, 2007, 1, 257-265.                                                                                                | 0.1              | 19                 |
| 239 | Biodegradable Blends from Corn Gluten Meal and Poly(butylene adipate-co-terephthalate) (PBAT):<br>Studies on the Influence of Plasticization and Destructurization on Rheology, Tensile Properties and<br>Interfacial Interactions. Journal of Polymers and the Environment, 2014, 22, 167-175. | 2.4              | 18                 |
| 240 | Reactive compatibilization and performance evaluation of miscanthus biofiber reinforced<br>poly(hydroxybutyrateâ€coâ€hydroxyvalerate) biocomposites. Journal of Applied Polymer Science, 2017, 134,<br>•                                                                                        | 1.3              | 18                 |
| 241 | Biodegradable and Bio-based Green Blends from Carbon Dioxide-Derived Bioplastic and Poly(Butylene) Tj ETQq1                                                                                                                                                                                     | 1 0.78431<br>2.4 | l4 rgBT /Over      |
| 242 | Sustainable Carbonaceous Biofiller from Miscanthus: Size Reduction, Characterization, and Potential<br>Bio-composites Applications. BioResources, 2018, 13, .                                                                                                                                   | 0.5              | 18                 |
| 243 | Rheological, Thermal, and Morphological Characteristics of Plasticized Cellulose Acetate Composite<br>with Natural Fibers. Macromolecular Symposia, 2005, 224, 297-308.                                                                                                                         | 0.4              | 17                 |
| 244 | Thermal, mechanical, and morphological investigation of injection molded poly(trimethylene) Tj ETQq0 0 0 rgBT                                                                                                                                                                                   | /Overlock<br>2.3 | 10 Tf 50 382<br>17 |
| 245 | Hydrolytic stability of polycarbonate/poly(lactic acid) blends and its evaluation via poly(lactic) acid median melting point depression. Polymer Degradation and Stability, 2016, 134, 227-236.                                                                                                 | 2.7              | 17                 |
| 246 | Processing and physical properties of native grass-reinforced biocomposites. Polymer Engineering and Science, 2007, 47, 969-976.                                                                                                                                                                | 1.5              | 16                 |
| 247 | Synergistic improvements in the impact strength and % elongation of polyhydroxybutyrate-co-valerate copolymers with functionalized soybean oils and POSS.<br>International Journal of Plastics Technology, 2010, 14, 1-16.                                                                      | 2.9              | 16                 |
| 248 | Waterâ€Blown Rigid Biofoams from Soyâ€Based Biopolyurethane and Microcrystalline Cellulose. JAOCS,<br>Journal of the American Oil Chemists' Society, 2012, 89, 2057-2065.                                                                                                                       | 0.8              | 16                 |
| 249 | Mechanical properties of compatibilized nylon 6/polypropylene blends; studies of the interfacial behavior through an emulsion model. Journal of Applied Polymer Science, 2014, 131, .                                                                                                           | 1.3              | 16                 |
| 250 | Study of the effect of processing conditions on the coâ€injection of PBS/PBAT and PTT/PBT blends for parts with increased bioâ€content. Journal of Applied Polymer Science, 2015, 132, .                                                                                                        | 1.3              | 16                 |
| 251 | Leaf extract mediated biogenic process for the decoration of graphene with silver nanoparticles.<br>Materials Letters, 2016, 178, 115-119.                                                                                                                                                      | 1.3              | 16                 |
| 252 | In Situ Cellulose Nanocrystal-Reinforced Glycerol-Based Biopolyester for Enhancing Poly(lactic acid)<br>Biocomposites. ACS Omega, 2018, 3, 3857-3867.                                                                                                                                           | 1.6              | 16                 |

| #   | Article                                                                                                                                                                                                                                                                    | IF                | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 253 | Effect of Compatibilization on Biobased Rubber-Toughened Poly(trimethylene terephthalate):<br>Miscibility, Morphology, and Mechanical Properties. ACS Omega, 2018, 3, 7300-7309.                                                                                           | 1.6               | 16            |
| 254 | Biocarbon from spent coffee ground and their sustainable biocomposites with recycled water bottle<br>and bale wrap: A new life for waste plastics and waste food residues for industrial uses. Composites<br>Part A: Applied Science and Manufacturing, 2022, 154, 106759. | 3.8               | 16            |
| 255 | A Preliminary Study on Antimicrobial Edible Films from Pectin and Other Food Hydrocolloids by<br>Extrusion Method. Journal of Natural Fibers, 2008, 5, 366-382.                                                                                                            | 1.7               | 15            |
| 256 | Green Toughness Modifier from Downstream Corn Oil in Improving Poly(lactic acid) Performance.<br>ACS Applied Polymer Materials, 2019, 1, 3396-3406.                                                                                                                        | 2.0               | 15            |
| 257 | Physicochemical Characterization and Evaluation of Pecan Nutshell as Biofiller in a Matrix of Poly(lactic acid). Journal of Polymers and the Environment, 2019, 27, 521-532.                                                                                               | 2.4               | 15            |
| 258 | Insights on the structure-performance relationship of polyphthalamide (PPA) composites reinforced with high-temperature produced biocarbon. RSC Advances, 2020, 10, 26917-26927.                                                                                           | 1.7               | 15            |
| 259 | Pyrolyzed biomass from corn ethanol industry coproduct and their polypropylene-based composites:<br>Effect of heat treatment temperature on performance of the biocomposites. Composites Part B:<br>Engineering, 2021, 215, 108714.                                        | 5.9               | 15            |
| 260 | Novel Glycine Max (Soybean) Leaf Extract Based Biological Process for the Functionalization of<br>Carbon Nanotubes with Silver Nanoparticles. Nanoscience and Nanotechnology Letters, 2010, 2,<br>240-243.                                                                 | 0.4               | 15            |
| 261 | Life Cycle Assessment of renewable filler material (biochar) produced from perennial grass<br>(Miscanthus). AIMS Energy, 2019, 7, 430-440.                                                                                                                                 | 1.1               | 15            |
| 262 | Biodegradable Nanocomposites from Toughened Polyhydroxybutyrate and Titanate-Modified<br>Montmorillonite Clay. Journal of Nanoscience and Nanotechnology, 2007, 7, 3580-3589.                                                                                              | 0.9               | 14            |
| 263 | A Study of Physicomechanical and Morphological Properties of Starch/Poly(vinylalcohol) Based<br>Films. Journal of Polymers and the Environment, 2009, 17, 56-63.                                                                                                           | 2.4               | 14            |
| 264 | Coâ€ <scp>I</scp> njection Molded New Green Composites from Biodegradable Polyesters and<br>Miscanthus Fibers. Macromolecular Materials and Engineering, 2014, 299, 436-446.                                                                                               | 1.7               | 14            |
| 265 | Epoxidized pine oilâ€siloxane: Crosslinking kinetic study and thermomechanical properties. Journal of<br>Applied Polymer Science, 2015, 132, .                                                                                                                             | 1.3               | 14            |
| 266 | A study of mechanical properties of biobased epoxy network: Effect of addition of epoxidized soybean oil and poly(furfuryl alcohol). Journal of Applied Polymer Science, 2017, 134, .                                                                                      | 1.3               | 14            |
| 267 | Extrusion Based 3D Printing of Sustainable Biocomposites from Biocarbon and Poly(trimethylene) Tj ETQq1 1 0                                                                                                                                                                | .784314 rg<br>1.7 | gBT_/Overlock |
| 268 | Injection Moulded Biocomposites from Oat Hull and Polypropylene/Polylactide Blend: Fabrication and Performance Evaluation. Advances in Mechanical Engineering, 2013, 5, 761840.                                                                                            | 0.8               | 14            |
| 269 | Sustainable 3D printed composites from recycled ocean plastics and pyrolyzed soy-hulls: Optimization of printing parameters, performance studies and prototypes development. Composites Part C: Open Access, 2021, 6, 100197.                                              | 1.5               | 14            |
| 270 | Studies of Cu(II)-IO4â^' initiated graft copolymerization of methyl methacrylate from defatted pineapple<br>leaf fibres. Polymer International, 1999, 48, 868-872.                                                                                                         | 1.6               | 13            |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Preparation and characterization of nanocrystalline CoFe2O4 deposited on SiO2: in situ sol–gel process. Journal of Sol-Gel Science and Technology, 2011, 58, 24-32.                                                          | 1.1 | 13        |
| 272 | Synthesis, Characterization and Electrical Properties of Carbon Coated<br>LiCoPO <sub>4</sub> Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11,<br>3314-3322.                                              | 0.9 | 13        |
| 273 | Impact of Butyl Glycidyl Ether Comonomer on Poly(glycerol–succinate) Architecture and Dynamics<br>for Multifunctional Hyperbranched Polymer Design. Macromolecules, 2017, 50, 732-745.                                       | 2.2 | 13        |
| 274 | Synthesis of Shape Memory Poly(glycerol sebacate)-Stearate Polymer. Macromolecular Materials and<br>Engineering, 2017, 302, 1600294.                                                                                         | 1.7 | 13        |
| 275 | Injection-Molded Bioblends from Lignin and Biodegradable Polymers: Processing and Performance Evaluation. Journal of Polymers and the Environment, 2018, 26, 2360-2373.                                                      | 2.4 | 13        |
| 276 | Tecoma stans flower extract assisted biogenic synthesis of functional Ag-Talc nanostructures for antimicrobial applications. Bioresource Technology Reports, 2019, 7, 100298.                                                | 1.5 | 13        |
| 277 | Long-term performance of β-nucleated toughened polypropylene-biocarbon composites. Composites<br>Part A: Applied Science and Manufacturing, 2018, 105, 274-280.                                                              | 3.8 | 13        |
| 278 | Resources and Waste Management in a Bio-Based Economy. Waste Management and Research, 2012, 30, 215-216.                                                                                                                     | 2.2 | 12        |
| 279 | Examination of a Biobased Carbon Nucleating Agent on Poly(lactic acid) Crystallization. Journal of Renewable Materials, 2017, 5, 94-105.                                                                                     | 1.1 | 12        |
| 280 | Synthesis and characterization of novel nitrogen doped biocarbons from distillers dried grains with solubles (DDGS) for supercapacitor applications. Bioresource Technology Reports, 2020, 9, 100375.                        | 1.5 | 12        |
| 281 | Morphology and performance relationship studies on biodegradable ternary blends of poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate), polylactic acid, and polypropylene carbonate. RSC Advances, 2020, 10, 44624-44632. | 1.7 | 12        |
| 282 | Welcome to the Journal of Biobased Materials and Bioenergy. Journal of Biobased Materials and Bioenergy, 2007, 1, i-ii.                                                                                                      | 0.1 | 12        |
| 283 | Melt Processing and Characterization of Bionanocomposites Made from Poly(butylene succinate)<br>Bioplastic and Carbon Black. Macromolecular Materials and Engineering, 2015, 300, 118-126.                                   | 1.7 | 11        |
| 284 | Studies on why the heat deflection temperature of polylactide bioplastic cannot be improved by overcrosslinking. Polymer Crystallization, 2019, 2, e10088.                                                                   | 0.5 | 11        |
| 285 | Hybrid Green Bionanocomposites of Bio-based Poly(butylene succinate) Reinforced with Pyrolyzed<br>Perennial Grass Microparticles and Graphene Nanoplatelets. ACS Omega, 2019, 4, 20476-20485.                                | 1.6 | 11        |
| 286 | Sustainable Biocomposites from Recycled Bale Wrap Plastic and Agave Fiber: Processing and Property<br>Evaluation. ACS Omega, 2021, 6, 2856-2864.                                                                             | 1.6 | 11        |
| 287 | Physico-Mechanical and Morphological Study of Starch/Polyvinylalcohol Based Biocomposite Films<br>Reinforced with Microcrystalline Cellulose. Journal of Biobased Materials and Bioenergy, 2009, 3,<br>100-107.              | 0.1 | 11        |
| 288 | Injection moldable hybrid sustainable composites of BioPBS and PHBV reinforced with talc and starch<br>as potential alternatives to single-use plastic packaging. Composites Part C: Open Access, 2021, 6,<br>100201.        | 1.5 | 11        |

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Value-Added Bio-carbon Production through the Slow Pyrolysis of Waste Bio-oil: Fundamental<br>Studies on Their Structure–Property–Processing Co-relation. ACS Omega, 2022, 7, 1612-1627.                                                                               | 1.6 | 11        |
| 290 | Effect of Coâ€Rotation and Counterâ€Rotation Extrusion Processing on the Thermal and Mechanical<br>Properties, and Morphology of Plasticized Soy Protein Isolate and Poly(butylene succinate) Blends.<br>Macromolecular Materials and Engineering, 2011, 296, 788-801. | 1.7 | 10        |
| 291 | Renewable resources-based PTT [poly(trimethylene terephthalate)]/switchgrass fiber composites: The effect of compatibilization. Pure and Applied Chemistry, 2012, 85, 521-532.                                                                                         | 0.9 | 10        |
| 292 | Novel biocomposites from poly(trimethylene terephthalate) and recycled carbon fibres. Journal of<br>Materials Science, 2012, 47, 6056-6065.                                                                                                                            | 1.7 | 10        |
| 293 | The effect of particle size on the rheological properties of polyamide 6/biochar composites. AIP<br>Conference Proceedings, 2015, , .                                                                                                                                  | 0.3 | 10        |
| 294 | Sustainable biocomposites from Nylon 6 and polypropylene blends and biocarbon – Studies on<br>tailored morphologies and complex composite structures. Composites Part A: Applied Science and<br>Manufacturing, 2020, 129, 105680.                                      | 3.8 | 10        |
| 295 | Statistical design of sustainable composites from poly(lactic acid) and grape pomace. Journal of<br>Applied Polymer Science, 2020, 137, 49061.                                                                                                                         | 1.3 | 9         |
| 296 | Experimental Investigation on Machinability of Polypropylene Reinforced with Miscanthus Fibers and<br>Biochar. Materials, 2020, 13, 1181.                                                                                                                              | 1.3 | 9         |
| 297 | Effect of a Small Amount of Synthetic Fiber on Performance of Biocarbonâ€Filled Nylonâ€Based Hybrid<br>Biocomposites. Macromolecular Materials and Engineering, 2021, 306, 2000680.                                                                                    | 1.7 | 9         |
| 298 | Biodegradable Polymer Blends: Studies on Performance Control through Droplet to Co-continuous<br>Morphology. ACS Applied Polymer Materials, 2022, 4, 5546-5556.                                                                                                        | 2.0 | 9         |
| 299 | Novel Materials from Sesame Husks and Unsaturated Polyester Resin. Industrial & Engineering<br>Chemistry Research, 2010, 49, 6069-6074.                                                                                                                                | 1.8 | 8         |
| 300 | Hybrid Bioâ€Based Composites from UPE/EML Blends, Natural Fibers, and Nanoclay. Macromolecular<br>Materials and Engineering, 2014, 299, 1306-1315.                                                                                                                     | 1.7 | 8         |
| 301 | A statistical approach to engineer a biocomposite formulation from biofuel coproduct with balanced properties. Journal of Applied Polymer Science, 2014, 131, .                                                                                                        | 1.3 | 8         |
| 302 | Alkali and Peroxide Bleach Treatments on Spring Harvested Switchgrass for Potential Composite<br>Application. BioResources, 2016, 11, .                                                                                                                                | 0.5 | 8         |
| 303 | Improvement of Impact Toughness of Biodegradable Poly(butylene succinate) by Melt Blending with<br>Sustainable Biobased Glycerol Elastomers. Journal of Polymers and the Environment, 2018, 26,<br>1078-1087.                                                          | 2.4 | 8         |
| 304 | Surface Modification of Flax Fibers for Manufacture of Engineering Thermoplastic Biocomposites.<br>Journal of Composites Science, 2020, 4, 64.                                                                                                                         | 1.4 | 8         |
| 305 | Impact of renewable carbon on the properties of composites made by using three types of polymers having different polarity. Journal of Applied Polymer Science, 2021, 138, 49948.                                                                                      | 1.3 | 8         |
| 306 | Novel puffball (Lycoperdon Sp.) spores derived hierarchical nanostructured Biocarbon: A preliminary investigation on thermochemical conversion and characterization for supercapacitor applications. Materials Letters, 2021, 291, 129432.                             | 1.3 | 8         |

Amar Kumar Mohanty

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Green Synthesis for Lignin Plasticization. Journal of Renewable Materials, 2013, 1, 154-165.                                                                                                                                                     | 1.1 | 7         |
| 308 | Novel Biocomposites from Biobased Epoxy and Corn-Based Distillers Dried Grains (DDG). Journal of Polymers and the Environment, 2015, 23, 425-436.                                                                                                | 2.4 | 7         |
| 309 | Novel sustainable materials from waste plastics: compatibilized blend from discarded bale wrap and plastic bottles. RSC Advances, 2021, 11, 8594-8605.                                                                                           | 1.7 | 7         |
| 310 | Impact of temperature and <i>in situ</i> FeCo catalysis on the architecture and Young's modulus of model wood-based biocarbon. Green Chemistry, 2021, 23, 3015-3027.                                                                             | 4.6 | 7         |
| 311 | Biocomposites from Thermoplastic Postindustrial Waste Starches Filled with Mineral Fillers for<br>Singleâ€Use Flexible Packaging. Macromolecular Materials and Engineering, 2022, 307, .                                                         | 1.7 | 7         |
| 312 | Effect of maleated polypropylene emulsion on the mechanical and thermal properties of lignin-polypropylene blends. AIP Conference Proceedings, 2015, , .                                                                                         | 0.3 | 6         |
| 313 | Evaluating the Performance of a Semiaromatic/Aliphatic Polyamide Blend: The Case for Polyphthalamide (PPA) and Polyamide 4,10 (PA410). Polymers, 2021, 13, 3391.                                                                                 | 2.0 | 6         |
| 314 | Waste valorization in sustainable engineering materials: Reactive processing of recycled carpets waste with polyamide 6. Polymer Testing, 2022, 114, 107681.                                                                                     | 2.3 | 6         |
| 315 | Plywood adhesives derived from distillers' dried grains with solubles ( <scp>DDGS</scp> )<br>incorporating 2â€hydroxyethyl acrylate. Journal of Applied Polymer Science, 2018, 135, 45689.                                                       | 1.3 | 5         |
| 316 | Rheological Monitoring of Chemical Gelation of Biodegradable Poly(butylene succinate): Importance of Peroxide Concentration and Temperature in Reactive Extrusion. ACS Applied Polymer Materials, 2019, 1, 1604-1612.                            | 2.0 | 5         |
| 317 | Studies on 3D Printability of Novel Impact Modified Nylon 6: Experimental Investigations and Performance Evaluation. Macromolecular Materials and Engineering, 2021, 306, 2000548.                                                               | 1.7 | 5         |
| 318 | Path-dependent rheology of carbon particle-hydroxyethylcellulose fluids. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2021, 612, 126000.                                                                                 | 2.3 | 5         |
| 319 | Green Composites from a Bioplastic Blend of Poly(3-hyroxybutyrate- <i>co</i> -3-hydroxyvalerate) and<br>Carbon Dioxide-Derived Poly(propylene carbonate) and Filled with a Corn Ethanol-Industry<br>Co-product. ACS Omega, 2021, 6, 20103-20111. | 1.6 | 5         |
| 320 | Value-added biocarbon production through slow pyrolysis of mixed bio-oil wastes: studies on their<br>physicochemical characteristics and structure–property–processing co-relation. Biomass<br>Conversion and Biorefinery, 0, , .                | 2.9 | 5         |
| 321 | Characterization of methyl methacrylate grafted jute fibers. Journal of Applied Polymer Science, 1989, 37, 1423-1427.                                                                                                                            | 1.3 | 4         |
| 322 | A New Class of Injection Moulded Structural Biocomposites from PHBV Bioplastic and Carbon Fibre.<br>Macromolecular Materials and Engineering, 2013, 298, 789-795.                                                                                | 1.7 | 4         |
| 323 | Crossâ€Linkable Liquidâ€Crystalline Biopolyesteramide as a Multifunctional Polymeric Platform Designed<br>from Corn Oil Sideâ€Stream Product of Bioethanol Industry. Macromolecular Rapid Communications,<br>2019, 40, e1900093.                 | 2.0 | 4         |
| 324 | Statistical Design of Biocarbon Reinforced Sustainable Composites from Blends of Polyphthalamide (PPA) and Polyamide 4,10 (PA410). Molecules, 2021, 26, 5387.                                                                                    | 1.7 | 4         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Natural Fiber Composites. Advances in Mechanical Engineering, 2013, 5, 569020.                                                                                                                                             | 0.8 | 4         |
| 326 | Biological Treatment of Soy Straw: Physicochemical Characterization. Journal of Biobased Materials and Bioenergy, 2009, 3, 373-379.                                                                                        | 0.1 | 4         |
| 327 | Novel Polymeric Resin Route for the Surface Modification of Nanocrystalline<br>LiCoO <sub>2</sub> Particles with Al <sub>2</sub> O <sub>3</sub> .<br>Nanoscience and Nanotechnology Letters, 2011, 3, 161-165.             | 0.4 | 3         |
| 328 | Studies on the Reaction of Acrylonitrile Butadiene Styrene to Melt Processing Conditions.<br>Macromolecular Materials and Engineering, 2015, 300, 750-757.                                                                 | 1.7 | 3         |
| 329 | Understanding the morphology formation and properties of polyamide 6 and bioâ€based poly(trimethylene terephthalate) blends. Polymer Engineering and Science, 2018, 58, 2210-2218.                                         | 1.5 | 3         |
| 330 | Formulation optimization of bioreinforced composites from polyolefins and dried distillers' grains<br>using statistical methods. Composites Part A: Applied Science and Manufacturing, 2019, 119, 246-260.                 | 3.8 | 3         |
| 331 | Studies on curing kinetics of polyphenylene sulfide: An insight into effects of curing temperature and time on structure and <scp>thermoâ€mechanical</scp> behavior. Journal of Applied Polymer Science, 2022, 139, 51817. | 1.3 | 3         |
| 332 | Effect of Titanate-Based Surface on Hydrophilicity and Interlayer Spacing of Montmorillonite Clay for Polymer Nanocomposites. Journal of Nanoscience and Nanotechnology, 2005, 5, 2138-2143.                               | 0.9 | 2         |
| 333 | Green design of nanoporous materials and carbonaceous foams from polyfurfuryl alcohol and epoxidized linseed oil. Materials Letters, 2017, 196, 238-241.                                                                   | 1.3 | 2         |
| 334 | Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model. Physical Chemistry Chemical Physics, 2018, 20, 16333-16346.          | 1.3 | 2         |
| 335 | An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites. AIP Conference Proceedings, 2015, , .                               | 0.3 | 1         |
| 336 | Biocomposites from co-polypropylene and distillers' grains. AIP Conference Proceedings, 2015, , .                                                                                                                          | 0.3 | 1         |
| 337 | Effect of Simulated Mass-tunable Auxetic Midsole On Vertical Ground Reaction Force. Journal of Biomechanical Engineering, 2022, , .                                                                                        | 0.6 | 1         |
| 338 | Preparation and Characterization of Organoclay Reinforced Polylactic Acid Biocomposite Films.<br>Advanced Materials Research, 2009, 67, 289-293.                                                                           | 0.3 | 0         |
| 339 | Macromol. Mater. Eng. 9/2011. Macromolecular Materials and Engineering, 2011, 296, .                                                                                                                                       | 1.7 | 0         |
| 340 | International Conference on Natural Fibers—Sustainable Materials for Advanced Applications 2013.<br>Conference Papers in Materials Science, 2013, 2013, 1-1.                                                               | 0.1 | 0         |
| 341 | Characterization of Carbonized Electrospun Lignin Fibers. Plastics Engineering, 2016, 72, 38-41.                                                                                                                           | 0.1 | 0         |

 $_{342}$  Effect of process engineering on the morphology and crystallization of biobased poly(trimethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

| #   | Article                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Novel Materials from Distillers' Grains: A New Window for a Sustainable Bioethanol Industry. Journal of Biobased Materials and Bioenergy, 2014, 8, 387-402. | 0.1 | 0         |