
David Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2911225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Impurities on the Corrosion Behavior of CO ₂ Transmission Pipeline Steel in Supercritical CO ₂ â^Water Environments. Environmental Science & Technology, 2010, 44, 9233-9238.	10.0	193
2	Dimetal Linked Open Frameworks:Â [(CH3)4N]2(Ag2,Cu2)Ge4S10. Chemistry of Materials, 1996, 8, 2147-2152.	6.7	115
3	Synthesis and Structure of the Novel Nanoporous Tin(IV) Sulfide Material TPA-SnS-3. Chemistry of Materials, 1995, 7, 245-248.	6.7	90
4	Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review. International Journal of Greenhouse Gas Control, 2013, 16, S70-S77.	4.6	89
5	Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science, 2018, 135, 167-176.	6.6	81
6	Influence of calcium and magnesium ions on CO2 corrosion of carbon steel in oil and gas production systems - A review. Journal of Natural Gas Science and Engineering, 2018, 59, 287-296.	4.4	80
7	Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite. Industrial & Engineering Chemistry Research, 2008, 47, 1738-1742.	3.7	77
8	Chemistry and Structure of the Passive Film on Mild Steel in CO ₂ Corrosion Environments. Industrial & Engineering Chemistry Research, 2009, 48, 6296-6302.	3.7	70
9	Thermodynamic Study of Hydrogen Sulfide Corrosion of Mild Steel. Corrosion, 2014, 70, 375-389.	1.1	66
10	Effect of Calcium on the Formation and Protectiveness of Iron Carbonate Layer in CO2 Corrosion. Corrosion, 2013, 69, 912-920.	1.1	65
11	Investigation of Pseudo-Passivation of Mild Steel in CO2 Corrosion. Corrosion, 2014, 70, 294-302.	1.1	65
12	Raman Spectra of the Unidimensional Aluminophosphate Molecular Sieves AlPO4-11, AlPO4-5, AlPO4-8, and VPI-5. The Journal of Physical Chemistry, 1994, 98, 4677-4682.	2.9	60
13	Nanoporous tin(IV) chalcogenides: Flexible open-framework nanbmaterials for chemical sensing. Advanced Materials, 1995, 7, 375-378.	21.0	59
14	Thermally Stable Selfâ€assembling Openâ€Frameworks: Isostructural Cs ⁺ and (CH ₃) ₄ N ⁺ Iron Germanium Sulfides. Chemische Berichte, 1996, 129, 283-287.	0.2	56
15	Studies on SAPO-5: synthesis with higher silicon contents. Zeolites, 1991, 11, 277-281.	0.5	54
16	Cloverite: exploring the 30ANG. supercage for advanced materials science applications. Journal of the American Chemical Society, 1993, 115, 2300-2313.	13.7	54
17	Thermal and hydrothermal stability of molecular sieve VPI-5 by in situ x-ray powder diffraction. The Journal of Physical Chemistry, 1991, 95, 1380-1383.	2.9	53
18	Time-dependent electrochemical behavior of carbon steel in MEA-based CO 2 capture process. International Journal of Greenhouse Gas Control, 2014, 30, 125-132.	4.6	53

DAVID YOUNG

#	Article	IF	CITATIONS
19	Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: An experimental study. International Journal of Greenhouse Gas Control, 2014, 23, 30-43.	4.6	49
20	Mesh-capped probe design for direct pH measurements at an actively corroding metal surface. Journal of Applied Electrochemistry, 2010, 40, 683-690.	2.9	45
21	A Thermodynamic Model for the Prediction of Mild Steel Corrosion Products in an Aqueous Hydrogen Sulfide Environment. Corrosion, 2015, 71, 945-960.	1.1	42
22	Synthesis and compositional tuning of the band properties of isostructural TMA-SnSxSe1-x?1 Nanoporous Materials. Advanced Materials, 1995, 7, 370-374.	21.0	40
23	Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO ₂ Corrosion of Mild Steel. Corrosion, 2017, 73, 238-246.	1.1	40
24	Self-assembling iron and manganese metal–germanium–selenide frameworks: [NMe4]2MGe4Se10, where Mâ€=â€Fe or Mn. Journal of the Chemical Society Dalton Transactions, 1998, , 2023-2028.	1.1	39
25	Investigations into the nature of the hexagonal polytype of faujasite. Zeolites, 1991, 11, 98-102.	0.5	37
26	Effect of CaCO3-saturated solution on CO2 corrosion of mild steel explored in a system with controlled water chemistry and well-defined mass transfer conditions. Corrosion Science, 2019, 158, 108078.	6.6	32
27	Effect of microgravity on the crystallization of a self-assembling layered material. Nature, 1997, 388, 857-860.	27.8	31
28	The Role of Iron Sulfide Polymorphism in Localized H2S Corrosion of Mild Steel. Corrosion, 2017, 73, 155-168.	1.1	29
29	13C nuclear magnetic resonance studies of the products of reaction of acetaldehyde and of simple ketones in liquid ammonia, in hydrazine hydrate, and in some substituted hydrazine solutions. Journal of the Chemical Society Perkin Transactions II, 1985, , 1285.	0.9	27
30	Microporous layered tin sulfide, SnS-1: molecular sieve or intercalant?. Journal of Materials Chemistry, 1998, 8, 711-720.	6.7	26
31	Thiols as Volatile Corrosion Inhibitors for Top-of-the-Line Corrosion. Corrosion, 2017, 73, 892-899.	1.1	26
32	Corrosion Behavior of Mild Steel in Sour Environments at Elevated Temperatures. Corrosion, 2017, 73, 915-926.	1.1	24
33	Decanethiol as a Corrosion Inhibitor for Carbon Steels Exposed to Aqueous CO ₂ . Corrosion, 2019, 75, 1246-1254.	1.1	24
34	Does Microgravity Influence Self-Assembly??. Advanced Materials, 1997, 9, 1133-1149.	21.0	23
35	Effect of FexCayCO3 and CaCO3 Scales on the CO2 Corrosion of Mild Steel. Corrosion, 2019, 75, 1434-1449.	1.1	23
36	Further Studies on the Synthesis of VPI-5. Studies in Surface Science and Catalysis, 1991, 60, 53-62.	1.5	22

DAVID YOUNG

#	Article	IF	CITATIONS
37	Effect of High Temperature on the Aqueous H ₂ S Corrosion of Mild Steel. Corrosion, 2017, 73, 1188-1191.	1.1	22
38	Electrochemical Investigation of the Role of Cl ^{â^'} on Localized Carbon Dioxide Corrosion Behavior of Mild Steel. Corrosion, 2013, 69, 15-24.	1.1	20
39	Investigation of Pitting Corrosion Initiation and Propagation of a Type 316L Stainless Steel Manufactured by the Direct Metal Laser Sintering Process. Corrosion, 2019, 75, 140-143.	1.1	19
40	Effect of Corrosion Inhibitor Alkyl Tail Length on the Electrochemical Process Governing CO2 Corrosion of Mild Steel. Corrosion, 2019, 75, 137-139.	1.1	18
41	Selection of Electrode Area for Electrochemical Noise Measurements to Monitor Localized CO ₂ Corrosion. Journal of the Electrochemical Society, 2012, 159, C283-C288.	2.9	16
42	Determining Critical Micelle Concentration of Organic Corrosion Inhibitors and its Effectiveness in Corrosion Mitigation. Corrosion, 2021, 77, 266-275.	1.1	15
43	Radium-226 Removal from Simulated Produced Water Using Natural Zeolite and Ion-Exchange Resin. Industrial & Engineering Chemistry Research, 2016, 55, 12502-12505.	3.7	14
44	Formation Mechanisms of Iron Oxide and Iron Sulfide at High Temperature in Aqueous H ₂ S Corrosion Environment. Journal of the Electrochemical Society, 2018, 165, C171-C179.	2.9	13
45	An in-situ Raman study on the oxidation of mackinawite as a corrosion product layer formed on mild steel in marginally sour environments. Corrosion Science, 2021, 188, 109516.	6.6	13
46	Pitting mechanism of mild steel in marginally sour environments—Part I: A parametric study based on formation of protective layers. Corrosion Science, 2021, 183, 109305.	6.6	12
47	A novel method for production of finely divided tin metal powders. Powder Technology, 1994, 78, 19-24.	4.2	10
48	Black powder formation by dewing and hygroscopic corrosion processes. Journal of Natural Gas Science and Engineering, 2018, 56, 358-367.	4.4	10
49	Application of Scratch Testing for the Assessment of the Adherent Properties of Scales and CO2 Corrosion Product Layers and their Relation to Corrosion. Corrosion Science, 2021, 190, 109625.	6.6	6
50	Rapid analysis of occluded Pr2NH in the AlPO4-11 and VPI-5 molecular sieves by direct mass spectrometry. Journal of Materials Chemistry, 1993, 3, 295.	6.7	5
51	CO ₂ Corrosion of Mild Steel Exposed to CaCO ₃ -Saturated Aqueous Solutions. Corrosion, 2019, 75, 1281-1284.	1.1	5
52	Pitting mechanism of mild steel in marginally sour environments – Part II: Pit initiation based on the oxidation of the chemisorbed iron sulfide layers. Corrosion Science, 2021, 184, 109337.	6.6	5
53	Delinkage of Metal Surface Saturation Concentration and Micellization in Corrosion Inhibition. Corrosion, 2022, 78, 625-633.	1.1	3
54	Phase Analysis of Scale Deposition in Boiler Tubes Utilizing Steam-Assisted Gravity Drainage Produced Water. Journal of Thermal Science and Engineering Applications, 2017, 9, .	1.5	2

0

#	Article	IF	CITATIONS
55	PITTING MECHANISM OF MILD STEEL IN MARGINALLY SOUR ENVIRONMENTS: PIT PROPAGATION BASED ON ACIDIFICATION BY CATALYTIC OXIDATION OF DISSOLVED HYDROGEN SULFIDE. Corrosion, 0, , .	1.1	2

56 Electrical Sieves for Molecule Recognition. , 1998, , 39-58.