
Nina D Ullrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Structural and the Functional Aspects of Intercellular Communication in iPSC-Cardiomyocytes. International Journal of Molecular Sciences, 2022, 23, 4460.	4.1	3
2	Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. International Journal of Molecular Sciences, 2022, 23, 7318.	4.1	4
3	Trigger-Specific Remodeling of KCa2 Potassium Channels in Models of Atrial Fibrillation. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 579-590.	0.7	5
4	AAV-mediated expression of NFAT decoy oligonucleotides protects from cardiac hypertrophy and heart failure. Basic Research in Cardiology, 2021, 116, 38.	5.9	10
5	Substrate Stiffness Influences Structural and Functional Remodeling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Physiology, 2021, 12, 710619.	2.8	14
6	Induced pluripotent stem cell-derived cardiomyocytes. , 2021, , 191-226.		0
7	Shaping the heart: Structural and functional maturation of iPSC-cardiomyocytes in 3D-micro-scaffolds. Biomaterials, 2020, 227, 119551.	11.4	54
8	Inhibition of cardiac Kv4.3 (Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. European Journal of Pharmacology, 2020, 880, 173159.	3.5	5
9	Endothelial cell modulation of cardiomyocyte gene expression. Experimental Cell Research, 2019, 383, 111565.	2.6	7
10	Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer. International Journal of Cancer, 2019, 145, 3299-3310.	5.1	34
11	Improving electrical properties of iPSC-cardiomyocytes by enhancing Cx43 expression. Journal of Molecular and Cellular Cardiology, 2018, 120, 31-41.	1.9	23
12	The VAMPâ€associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB Journal, 2018, 32, 6159-6173.	0.5	19
13	Targeting the Cardiac Sodium Channel to Increase Excitability of Stem-Cell Derived Cardiomyocytes. Biophysical Journal, 2017, 112, 19a.	0.5	0
14	Bacopa monnieri extract increases rat coronary flow and protects against myocardial ischemia/reperfusion injury. BMC Complementary and Alternative Medicine, 2017, 17, 117.	3.7	15
15	Novel Microarchitecture Induces Functional Remodeling of the Calcium Signaling Mechanisms in Restructured IPSC-Cardiomyocytes. Biophysical Journal, 2017, 112, 537a.	0.5	0
16	Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 229.	5.5	46
17	Functional characterization of orbicularis oculi and extraocular muscles. Journal of General Physiology, 2016, 147, 395-406.	1.9	9
18	Functional characterization of orbicularis oculi and extraocular muscles. Journal of Cell Biology, 2016, 213, 21330IA96.	5.2	0

NINA D ULLRICH

#	Article	IF	CITATIONS
19	Functional Characterization and Comparison of Intercellular Communication in Stem Cell-Derived Cardiomyocytes. Stem Cells, 2015, 33, 2208-2218.	3.2	21
20	Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes. Frontiers in Cell and Developmental Biology, 2015, 3, 58.	3.7	8
21	Development and Characterization of a Scaffold-Free 3D Spheroid Model of Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes. Tissue Engineering - Part C: Methods, 2015, 21, 852-861.	2.1	153
22	Characterisation of Connexin Expression and Electrophysiological Properties in Stable Clones of the HL-1 Myocyte Cell Line. PLoS ONE, 2014, 9, e90266.	2.5	41
23	Biochemical, Cellular and Electrophysiological Characterization of HMCL-7304 a Human Skeletal Muscle-Derived Cell Line. Biophysical Journal, 2014, 106, 446a.	0.5	0
24	Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. Journal of Heart and Lung Transplantation, 2014, 33, 203-210.	0.6	13
25	P682Preserved contractile function of unloaded cardiomyocytes despite diminished sarcomere size is associated with troponin I activation. Cardiovascular Research, 2014, 103, S124.4-S125.	3.8	0
26	Establishment of a human skeletal muscle-derived cell line: biochemical, cellular and electrophysiological characterization. Biochemical Journal, 2013, 455, 169-177.	3.7	19
27	Posttranslational modifications of cardiac ryanodine receptors: Ca2+ signaling and EC-coupling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 866-875.	4.1	69
28	Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovascular Research, 2013, 97, 666-675.	3.8	45
29	â€~Eventless' InsP ₃ â€dependent SR a ²⁺ release affecting atrial Ca ^{2+sparks. Journal of Physiology, 2013, 591, 2103-2111.}	^p >.9	17
30	Culture of Cardiogenic Stem Cells on PCL-Scaffolds: Towards the Creation of Beating Tissue Constructs. , 2013, , .		5
31	Isolation of Cardiovascular Precursor Cells from the Human Fetal Heart. Tissue Engineering - Part A, 2012, 18, 198-207.	3.1	15
32	Insights into RyRs Dysfunctions via Studies of Intracellular Calcium Signals. Biophysical Journal, 2012, 102, 213a.	0.5	1
33	PKA phosphorylation of cardiac ryanodine receptor modulates SR luminal Ca2+ sensitivity. Journal of Molecular and Cellular Cardiology, 2012, 53, 33-42.	1.9	49
34	Hypersensitive Intracellular Ca2+ Signaling Precedes Deterioration of Cardiac Functions in Muscular Dystrophy. Biophysical Journal, 2011, 100, 562a.	0.5	0
35	Cardiac Ryanodine Receptor Phosphorylation at Ser2808 is Involved in Intra-SR Calcium Sensing. Biophysical Journal, 2011, 100, 353a.	0.5	1
36	Alterations of excitation-contraction coupling and excitation coupled Ca2+ entry in human myotubes carrying CAV3 mutations linked to rippling muscle. Human Mutation, 2011, 32, 309-317.	2.5	15

NINA D ULLRICH

#	Article	IF	CITATIONS
37	Impaired Ca2+ Release Synchronization in RyR2-S2808a Mouse Cardiomyocytes During Î ² -Adrenergic Stimulation. Biophysical Journal, 2010, 98, 550a.	0.5	1
38	Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1992-H2003.	3.2	49
39	Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Archiv European Journal of Physiology, 2009, 458, 915-928.	2.8	95
40	Changes of EC-coupling and RyR Calcium Sensitivity in Dystrophic mdx Mouse Cardiomyocytes. Biophysical Journal, 2009, 96, 10a-11a.	0.5	2
41	Genomic deletion of estrogen receptors ERα and ERβ does not alter estrogen-mediated inhibition of Ca ²⁺ influx and contraction in murine cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2421-H2427.	3.2	44
42	Oestrogen directly inhibits the cardiovascular L-type Ca2+ channel Cav1.2. Biochemical and Biophysical Research Communications, 2007, 361, 522-527.	2.1	35
43	Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovascular Disorders, 2006, 6, 25.	1.7	28
44	Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1287-C1296.	4.6	29
45	Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium, 2005, 37, 267-278.	2.4	215