
Eleftherios T Papoutsakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metabolic Engineering, 2022, 71, 99-116.	7.0	24
2	Extracellular vesicles facilitate largeâ€scale dynamic exchange of proteins and RNA among cultured Chinese hamster ovary and human cells. Biotechnology and Bioengineering, 2022, 119, 1222-1238.	3.3	18
3	Cover Image, Volume 119, Number 4, April 2022. Biotechnology and Bioengineering, 2022, 119, .	3.3	Ο
4	13C-metabolic flux analysis of Clostridium ljungdahlii illuminates its core metabolism under mixotrophic culture conditions. Metabolic Engineering, 2022, 72, 161-170.	7.0	6
5	Cover Image, Volume 119, Number 5, May 2022. Biotechnology and Bioengineering, 2022, 119, .	3.3	0
6	miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin. International Journal of Molecular Sciences, 2022, 23, 5355.	4.1	10
7	Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2021, 118, 43-57.	3.3	8
8	Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon. Applied Microbiology and Biotechnology, 2021, 105, 869-876.	3.6	14
9	Improving the Methanol Tolerance of an Escherichia coli Methylotroph via Adaptive Laboratory Evolution Enhances Synthetic Methanol Utilization. Frontiers in Microbiology, 2021, 12, 638426.	3.5	18
10	Modeling Growth Kinetics, Interspecies Cell Fusion, and Metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii Syntrophic Coculture. MSystems, 2021, 6, .	3.8	6
11	Anaerobic fluorescent reporters for cell identification, microbial cell biology and high-throughput screening of microbiota and genomic libraries. Current Opinion in Biotechnology, 2021, 71, 151-163.	6.6	14
12	Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation. Metabolic Engineering, 2020, 57, 247-255.	7.0	24
13	Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Applied and Environmental Microbiology, 2020, 86, .	3.1	21
14	Interspecies Microbial Fusion and Large-Scale Exchange of Cytoplasmic Proteins and RNA in a Syntrophic <i>Clostridium</i> Coculture. MBio, 2020, 11, .	4.1	36
15	Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production. Metabolic Engineering, 2020, 60, 45-55.	7.0	32
16	Triggering the stringent response enhances synthetic methanol utilization in Escherichia coli. Metabolic Engineering, 2020, 61, 1-10.	7.0	13
17	Human megakaryocytic microparticles induce de novo platelet biogenesis in a wild-type murine model. Blood Advances, 2020, 4, 804-814.	5.2	21
18	A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for <i>Clostridium</i> Organisms Based on the Fluorescence-Activating and Absorption-Shifting Tag Protein (FAST). Applied and Environmental Microbiology, 2019, 85, .	3.1	52

#	Article	IF	CITATIONS
19	Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Current Opinion in Biotechnology, 2019, 60, 89-98.	6.6	123
20	Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metabolic Engineering, 2019, 52, 9-19.	7.0	70
21	Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose. Metabolic Engineering, 2019, 52, 168-177.	7.0	24
22	Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel <i>In Vivo</i> CO Exchange Activity En Route to Heterologous Installation of a Functional Wood-Ljungdahl Pathway. Applied and Environmental Microbiology, 2018, 84, .	3.1	24
23	Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Current Opinion in Biotechnology, 2018, 50, 81-93.	6.6	94
24	Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metabolic Engineering, 2018, 45, 75-85.	7.0	74
25	Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. Science Advances, 2018, 4, eaau6762.	10.3	33
26	Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS ONE, 2018, 13, e0203991.	2.5	12
27	RNAseqâ€based transcriptome assembly of <i>Clostridium acetobutylicum</i> for functional genome annotation and discovery. AICHE Journal, 2018, 64, 4271-4280.	3.6	6
28	Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metabolic Engineering, 2018, 50, 173-191.	7.0	56
29	Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
30	Sort-Seq Approach to Engineering a Formaldehyde-Inducible Promoter for Dynamically Regulated <i>Escherichia coli</i> Growth on Methanol. ACS Synthetic Biology, 2017, 6, 1584-1595.	3.8	70
31	Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO ₂ and Oxidation of CO by Clostridium acetobutylicum. Applied and Environmental Microbiology, 2017, 83, .	3.1	21
32	In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex. Biotechnology Progress, 2017, 33, 1243-1249.	2.6	10
33	How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells?. Journal of Controlled Release, 2017, 247, 1-18.	9.9	58
34	Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017, 39, 49-59.	7.0	137
35	Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction. Journal of Biological Chemistry, 2016, 291, 7831-7843.	3.4	21
36	Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop. Journal of Biotechnology, 2016, 230, 40-43.	3.8	13

#	Article	IF	CITATIONS
37	Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Current Opinion in Microbiology, 2016, 33, 56-66.	5.1	66
38	Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12691-12696.	7.1	93
39	CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nature Communications, 2016, 7, 12800.	12.8	128
40	Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals SpoOA deficiency responsible for increased butanol production and superior growth. Biotechnology for Biofuels, 2015, 8, 227.	6.2	35
41	Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nature Communications, 2015, 6, 7045.	12.8	55
42	The Clostridium Sporulation Programs: Diversity and Preservation of Endospore Differentiation. Microbiology and Molecular Biology Reviews, 2015, 79, 19-37.	6.6	155
43	Editorial overview: Energy biotechnology. Current Opinion in Biotechnology, 2015, 33, viii-xi.	6.6	2
44	Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Current Opinion in Biotechnology, 2015, 33, 165-175.	6.6	150
45	Reassessing the Progress in the Production of Advanced Biofuels in the Current Competitive Environment and Beyond: What Are the Successes and Where Progress Eludes Us and Why. Industrial & Engineering Chemistry Research, 2015, 54, 10170-10182.	3.7	24
46	Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes. Current Opinion in Biotechnology, 2015, 36, 16-31.	6.6	1
47	Capturing the response of Clostridium acetobutylicumto chemical stressors using a regulated genome-scale metabolic model. Biotechnology for Biofuels, 2014, 7, 144.	6.2	56
48	ÂK of Clostridium acetobutylicum Is the First Known Sporulation-Specific Sigma Factor with Two Developmentally Separated Roles, One Early and One Late in Sporulation. Journal of Bacteriology, 2014, 196, 287-299.	2.2	48
49	Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Applied Microbiology and Biotechnology, 2014, 98, 8399-8411.	3.6	23
50	Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood, 2014, 124, 2094-2103.	1.4	71
51	Exploring the Capabilities of the Geobiosphere's Microbial Genome. AICHE Journal, 2013, 59, 688-698.	3.6	5
52	The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics, 2013, 14, 849.	2.8	49
53	Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Systems Biology, 2013, 7, 120.	3.0	65
54	Three-Stage <i>Ex Vivo</i> Expansion of High-Ploidy Megakaryocytic Cells: Toward Large-Scale Platelet Production. Tissue Engineering - Part A, 2013, 19, 998-1014.	3.1	55

#	Article	IF	CITATIONS
55	Workflow for quantitative proteomic analysis of Clostridium acetobutylicum ATCC 824 using iTRAQ tags. Methods, 2013, 61, 269-276.	3.8	19
56	Stemâ€Cell Niche Based Comparative Analysis of Chemical and Nanoâ€mechanical Material Properties Impacting Ex Vivo Expansion and Differentiation of Hematopoietic and Mesenchymal Stem Cells. Advanced Healthcare Materials, 2013, 2, 25-42.	7.6	63
57	Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Research, 2013, 41, 8726-8737.	14.5	102
58	Novel System for Efficient Isolation of Clostridium Double-Crossover Allelic Exchange Mutants Enabling Markerless Chromosomal Gene Deletions and DNA Integration. Applied and Environmental Microbiology, 2012, 78, 8112-8121.	3.1	113
59	Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiological Genomics, 2012, 44, 638-650.	2.3	26
60	Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 2012, 23, 364-381.	6.6	364
61	Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 2012, 1, 380-395.	7.8	204
62	Role of tumor suppressor p53 in megakaryopoiesis and platelet function. Experimental Hematology, 2012, 40, 131-142.e4.	0.4	33
63	The Bleeding Defect Exhibited by Aryl Hydrocarbon Receptor-Null Mice Is Due to Defective Collagen-Dependent Outside-in Signaling. Blood, 2012, 120, 3294-3294.	1.4	0
64	Inactivation of σ ^E and σ ^G in <i>Clostridium acetobutylicum</i> Illuminates Their Roles in Clostridial-Cell-Form Biogenesis, Granulose Synthesis, Solventogenesis, and Spore Morphogenesis. Journal of Bacteriology, 2011, 193, 1414-1426.	2.2	78
65	The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization. British Journal of Haematology, 2011, 152, 469-484.	2.5	37
66	SpollE Is Necessary for Asymmetric Division, Sporulation, and Expression of σ ^F , σ ^E , and σ ^G but Does Not Control Solvent Production in Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 2011, 193, 5130-5137.	2.2	47
67	Inactivation of σ ^F in Clostridium acetobutylicum ATCC 824 Blocks Sporulation Prior to Asymmetric Division and Abolishes σ ^E and σ ^G Protein Expression but Does Not Block Solvent Formation. Journal of Bacteriology, 2011, 193, 2429-2440.	2.2	62
68	Small RNAs in the Genus <i>Clostridium</i> . MBio, 2011, 2, e00340-10.	4.1	75
69	The Aryl Hydrocarbon Receptor Influences Multiple Stages of Megakaryocyte Differentiation. Blood, 2011, 118, 1298-1298.	1.4	0
70	The Importance of Matrix Elasticity and Shear Force on Megakaryocytic Differentiation. Blood, 2011, 118, 1329-1329.	1.4	9
71	Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Current Opinion in Biotechnology, 2010, 21, 85-99.	6.6	137
72	Metabolic flux analysis of embryonic stem cells using three distinct differentiation protocols and comparison to gene expression patterns. Biotechnology Progress, 2010, 26, 1222-1229.	2.6	11

#	Article	IF	CITATIONS
73	Metabolite stress and tolerance in the production of biofuels and chemicals: Geneâ€expressionâ€based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe <i>Clostridium acetobutylicum</i> . Biotechnology and Bioengineering, 2010, 105, 1131-1147.	3.3	191
74	A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing. Metabolic Engineering, 2010, 12, 268-281.	7.0	70
75	A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12, 307-331.	7.0	478
76	Hes1 Expression Impacts Megakaryocytic Polyploidization and May Contribute to the Platelet Defects Found In Aryl Hydrocarbon Receptor (AhR)-Null Mice Blood, 2010, 116, 2612-2612.	1.4	0
77	Mechanistic studies on the effects of nicotinamide on megakaryocytic polyploidization and the roles of NAD+ levels and SIRT inhibition. Experimental Hematology, 2009, 37, 1340-1352.e3.	0.4	38
78	Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in <i>Clostridium acetobutylicum</i> fermentations. Biotechnology and Bioengineering, 2009, 102, 38-49.	3.3	123
79	Metabolic engineering of <i>Clostridium acetobutylicum</i> M5 for highly selective butanol production. Biotechnology Journal, 2009, 4, 1432-1440.	3.5	117
80	Engineering solventogenic clostridia. Current Opinion in Biotechnology, 2008, 19, 420-429.	6.6	302
81	Genomeâ€scale model for <i>Clostridium acetobutylicum</i> : Part II. Development of specific proton flux states and numerically determined subâ€systems. Biotechnology and Bioengineering, 2008, 101, 1053-1071.	3.3	73
82	Genomeâ€scale model for <i>Clostridium acetobutylicum</i> : Part I. Metabolic network resolution and analysis. Biotechnology and Bioengineering, 2008, 101, 1036-1052.	3.3	166
83	Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metabolic Engineering, 2008, 10, 321-332.	7.0	152
84	Comparative Transcriptional Analysis of Embryoid Body Versus Two-Dimensional Differentiation of Murine Embryonic Stem Cells. Tissue Engineering - Part A, 2008, 14, 1603-1614.	3.1	11
85	The transcriptional program underlying the physiology of clostridial sporulation. Genome Biology, 2008, 9, R114.	9.6	159
86	Tumor Suppressor Protein p53 Regulates Megakaryocytic Polyploidization and Apoptosis. Journal of Biological Chemistry, 2008, 283, 15589-15600.	3.4	38
87	Development and Application of Flow-Cytometric Techniques for Analyzing and Sorting Endospore-Forming Clostridia. Applied and Environmental Microbiology, 2008, 74, 7497-7506.	3.1	73
88	Gene Ontology-driven transcriptional analysis of CD34 ⁺ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis. Physiological Genomics, 2008, 33, 159-169.	2.3	23
89	Tumor Suppressor Protein p53 Affects Megakaryocytic Maturation: In Vivo and Ex Vivo Post-Translational Modification Studies. Blood, 2008, 112, 2443-2443.	1.4	1
90	Deregulated CDC25A Expression Promotes Mammary Tumorigenesis with Genomic Instability. Cancer Research, 2007, 67, 984-991.	0.9	70

#	Article	IF	CITATIONS
91	A General Framework for Designing and Validating Oligomer-Based DNA Microarrays and Its Application to Clostridium acetobutylicum. Applied and Environmental Microbiology, 2007, 73, 4631-4638.	3.1	22
92	A systems-biology analysis of isogenic megakaryocytic and granulocytic cultures identifies new molecular components of megakaryocytic apoptosis. BMC Genomics, 2007, 8, 384.	2.8	18
93	Comparative, genome-scale transcriptional analysis of CHRF-288-11 and primary human megakaryocytic cell cultures provides novel insights into lineage-specific differentiation. Experimental Hematology, 2007, 35, 476-489.e23.	0.4	42
94	Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes. British Journal of Haematology, 2006, 135, 554-566.	2.5	63
95	A comparative genomic view of clostridial sporulation and physiology. Nature Reviews Microbiology, 2005, 3, 969-978.	28.6	295
96	Transcriptional Program of Early Sporulation and Stationary-Phase Events in <i>Clostridium acetobutylicum</i> . Journal of Bacteriology, 2005, 187, 7103-7118.	2.2	142
97	Transcriptional Analysis of spo0A Overexpression in Clostridium acetobutylicum and Its Effect on the Cell's Response to Butanol Stress. Journal of Bacteriology, 2004, 186, 1959-1971.	2.2	161
98	Transcriptional Analysis of Butanol Stress and Tolerance in <i>Clostridium acetobutylicum</i> . Journal of Bacteriology, 2004, 186, 2006-2018.	2.2	212
99	Overexpression of groESL in Clostridium acetobutylicum Results in Increased Solvent Production and Tolerance, Prolonged Metabolism, and Changes in the Cell's Transcriptional Program. Applied and Environmental Microbiology, 2003, 69, 4951-4965.	3.1	339
100	Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum. Journal of Bacteriology, 2003, 185, 1923-1934.	2.2	159
101	DNA Array-Based Transcriptional Analysis of Asporogenous, Nonsolventogenic <i>Clostridium acetobutylicum</i> Strains SKO1 and M5. Journal of Bacteriology, 2003, 185, 4539-4547.	2.2	104
102	Antisense RNA Downregulation of Coenzyme A Transferase Combined with Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations. Journal of Bacteriology, 2003, 185, 3644-3653.	2.2	132
103	Northern, Morphological, and Fermentation Analysis of spo0A Inactivation and Overexpression in Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 2002, 184, 3586-3597.	2.2	212
104	Extracellular pH Affects the Proliferation of Cultured Human T Cells and Their Expression of the Interleukin-2 Receptor. Journal of Immunotherapy, 2000, 23, 669-674.	2.4	25
105	Sparging and agitation-induced injury of cultured animals cells: Do cell-to-bubble interactions in the bulk liquid injure cells?. , 2000, 51, 399-409.		42
106	Characterization of recombinant strains of theClostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition?. Biotechnology and Bioengineering, 2000, 67, 1-11.	3.3	167
107	Equations and calculations for fermentations of butyric acid bacteria. Biotechnology and Bioengineering, 2000, 67, 813-826.	3.3	15
108	Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: Shear,		53

#	Article	IF	CITATIONS
109	Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition?. , 2000, 67, 1.		2
110	Development and Characterization of a Gene Expression Reporter System for Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 1999, 65, 3793-3799.	3.1	109
111	Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor. Journal of Bacteriology, 1999, 181, 319-330.	2.2	95
112	Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultured in stirred tank bioreactors. , 1998, 60, 239-250.		47
113	Effects of methocel A15LV, polyethylene glycol, and polyvinyl alcohol on CD13 and CD33 receptor surface content and metabolism of HL60 cells cultured in stirred tank bioreactors. , 1998, 60, 251-258.		5
114	Serum increases the CD13 receptor expression, reduces the transduction of fluid-mechanical forces, and alters the metabolism of HL60 cells cultured in agitated bioreactors. , 1998, 60, 259-268.		14
115	Express together and conquer. Nature Biotechnology, 1998, 16, 416-417.	17.5	17
116	Sparging and agitationâ€induced injury of cultured animals cells: Do cellâ€toâ€bubble interactions in the bulk liquid injure cells?. Biotechnology and Bioengineering, 1996, 51, 399-409.	3.3	24
117	Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnology and Bioengineering, 1995, 47, 407-419.	3.3	76
118	Interfacial properties of cell culture media with cell-protecting additives. Biotechnology and Bioengineering, 1995, 47, 420-430.	3.3	55
119	Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH-dependent manner. Biotechnology and Bioengineering, 1994, 43, 505-514.	3.3	123
120	Serum-free media for cultures of primitive and mature hematopoietic cells. Biotechnology and Bioengineering, 1994, 43, 706-733.	3.3	38
121	Host-plasmid interactions in recombinant strains ofClostridium acetobutylicumATCC 824. FEMS Microbiology Letters, 1994, 123, 335-341.	1.8	13
122	Fluid-mechanical forces in agitated bioreactors reduce the CD13 and CD33 surface protein content of HL60 cells. Biotechnology and Bioengineering, 1993, 41, 868-877.	3.3	19
123	Metabolic engineering ofClostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnology and Bioengineering, 1993, 42, 1053-1060.	3.3	98
124	Expansion of Primitive Human Hematopoietic Progenitors in a Perfusion Bioreactor System with IL-3, IL-6, and Stem Cell Factor. Bio/technology, 1993, 11, 358-363.	1.5	94
125	Culture pH Affects Expression Rates and Glycosylation of Recombinant Mouse Placental Lactogen Proteins by Chinese Hamster Ovary (CHO) Cells. Nature Biotechnology, 1993, 11, 720-724.	17.5	115
126	Expression of Cloned Homologous Fermentative Genes in Clostridium Acetobutylicum ATCC 824. Nature Biotechnology, 1992, 10, 190-195.	17.5	209

#	Article	IF	CITATIONS
127	Vector Construction, Transformation, and Gene Amplification in Clostridium acetobutylicum ATCC 824. Annals of the New York Academy of Sciences, 1992, 665, 39-51.	3.8	32
128	FLUID-MECHANICAL DAMAGE OF FREELY-SUSPENDED ANIMAL CELLS IN AGITATED BIOREACTORS: EFFECTS OF DEXTRAN, DERIVATIZED CELLULOSES AND POLYVINYL ALCOHOL. Chemical Engineering Communications, 1992, 118, 341-360.	2.6	18
129	Construction ofEscherichia coli-Clostridium acetobutylicum shuttle vectors and transformation ofClostridium acetobutylicum strains. Biotechnology Letters, 1992, 14, 427-432.	2.2	33
130	Agitation induced cell injury in microcarrier cultures. Protective effect of viscosity is agitation intensity dependent: Experiments and modeling. Biotechnology and Bioengineering, 1992, 39, 95-107.	3.3	53
131	Damaging agitation intensities increase DNA synthesis rate and alter cell-cycle phase distributions of CHO cells. Biotechnology and Bioengineering, 1992, 40, 978-990.	3.3	51
132	Shear sensitivity of hybridoma cells in batch, fed-batch, and continuous cultures. Biotechnology Progress, 1990, 6, 114-120.	2.6	38
133	Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnology and Bioengineering, 1990, 36, 476-483.	3.3	231
134	Modeling of contact-inhibited animal cell growth on flat surfaces and spheres. Biotechnology and Bioengineering, 1989, 33, 300-305.	3.3	34
135	Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1989, 30, 585.	3.6	41
136	Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1989, 30, 450.	3.6	81
137	Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1989, 31-31, 435-444.	3.6	31
138	Solventogenesis inClostridium acetobutylicumfermentations related to carboxylic acid and proton concentrations. Biotechnology and Bioengineering, 1988, 32, 843-852.	3.3	106
139	Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnology and Bioengineering, 1988, 32, 1001-1014.	3.3	235
140	Thiolase from <i>Clostridium acetobutylicum</i> ATCC 824 and Its Role in the Synthesis of Acids and Solvents. Applied and Environmental Microbiology, 1988, 54, 2717-2722.	3.1	190
141	Growth dynamics of a methylotroph (Methylomonas L3) in continuous cultures. I. Fast transients induced by methanol pulses and methanol accumulation. Biotechnology and Bioengineering, 1987, 29, 55-64.	3.3	12
142	Growth dynamics of a methylotroph (Methylomonas L3) in continuous cultures. II. Growth inhibition and comparison against an unstructured model. Biotechnology and Bioengineering, 1987, 29, 65-71.	3.3	10
143	Intracellular reaction rates, enzyme activities and biomass yields in Methylomonas L3: growth rate and substrate composition effects. Applied Microbiology and Biotechnology, 1986, 24, 435.	3.6	10
144	Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures ofClostridium acetobutylicum. Applied Microbiology and Biotechnology, 1986, 24, 159-167.	3.6	65

#	Article	IF	CITATIONS
145	Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1986, 24, 159-167.	3.6	50
146	Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnology and Bioengineering, 1985, 27, 50-66.	3.3	110
147	Fermentation equations for propionic-acid bacteria and production of assorted oxychemicals from various sugars. Biotechnology and Bioengineering, 1985, 27, 67-80.	3.3	86
148	The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations ofClostridium acetobutylicum. Biotechnology and Bioengineering, 1985, 27, 681-694.	3.3	167
149	Gas chromatography and gateway sensors for on-line state estimation of complex fermentations (butanol-acetone fermentation). Biotechnology and Bioengineering, 1985, 27, 1246-1257.	3.3	65
150	Direct measurement of carbon substrate oxidation and incorporation patterns in RuMP-type methylotrophs: Chemostatic cultures ofMethylomonas L3. Biotechnology and Bioengineering, 1985, 27, 1623-1633.	3.3	10
151	Equations and calculations for fermentations of butyric acid bacteria. Biotechnology and Bioengineering, 1984, 26, 174-187.	3.3	274
152	Nusselt numbers near entrance of heat-exchange section in flow systems. AICHE Journal, 1981, 27, 687-689.	3.6	9