
Yuming Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910649/publications.pdf Version: 2024-02-01

YUMING TIAN

#	Article	IF	CITATIONS
1	A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Physica B: Condensed Matter, 2022, 624, 413395.	2.7	14
2	Preparation study for the low thermal expansion spodumene/mullite composites. International Journal of Applied Ceramic Technology, 2022, 19, 1702-1712.	2.1	5
3	Twoâ€step preparation of fly ashâ€based composites for microwave absorption. International Journal of Applied Ceramic Technology, 2021, 18, 1043-1051.	2.1	3
4	Properties of magnesiumâ€aluminate spinel derived from bauxite and magnesia. International Journal of Applied Ceramic Technology, 2021, 18, 1205-1212.	2.1	4
5	Temperature dependent thermal conductivity of IIa diamond by laser excited Raman spectroscopy. Applied Physics Letters, 2021, 118, 192104.	3.3	3
6	Synthesis and Microwave Absorption Properties of Fe-Loaded Fly Ash-Based Ceramic Composites. ACS Applied Electronic Materials, 2020, 2, 3307-3319.	4.3	25
7	Novel ceramic-based microwave absorbents derived from gangue. Journal of Materials Chemistry C, 2020, 8, 14238-14245.	5.5	15
8	Effect of feldspar milling on the properties of low-density ceramic proppants. Materials Research Innovations, 2020, , 1-7.	2.3	1
9	Photoluminescence studies of the 640nm center in electron irradiated IIa diamond. Spectroscopy Letters, 2020, 53, 580-586.	1.0	1
10	Photoluminescence and annealing of nitrogen-interstitials defects in electron irradiated diamond. Spectroscopy Letters, 2020, 53, 270-276.	1.0	3
11	Effects of Feldspar Content on Microstructure and Property for High-Strength Corundum-Mullite Proppants. Transactions of the Indian Ceramic Society, 2020, 79, 18-22.	1.0	5
12	Effects of CaCO 3 additive on properties and microstructure of corundum―And mulliteâ€based ceramic proppants. International Journal of Applied Ceramic Technology, 2020, 17, 1026-1032.	2.1	12
13	The Effect of Sintering Temperature on Phase Evolution and Sintering Mechanism of Ceramic Proppants with CaCO3 Addition. Materials Research, 2020, 23, .	1.3	2
14	Creation and Migration of Intrinsic Defects in Siâ€Doped Diamond Produced Using Microwave Plasma Chemical Vapor Deposition. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900003.	1.8	2
15	Sintering mechanism of high-intensity and low-density ceramic proppants prepared by recycling of waste ceramic sands. Advances in Applied Ceramics, 2019, 118, 114-120.	1.1	7
16	Effects of sintering temperature on microstructure, properties, and crushing behavior of ceramic proppants. International Journal of Applied Ceramic Technology, 2019, 16, 1450-1459.	2.1	7
17	Toughening effect of mullite whisker within low-density ceramic proppants. Advanced Composites Letters, 2019, 28, 2633366X1989062.	1.3	3
18	Preparation and characterization of low-density ceramic proppant containing coal gangue additive. Materials Research Innovations, 2019, 23, 61-65.	2.3	5

YUMING TIAN

#	Article	IF	CITATIONS
19	Lowâ€temperature sintering of ceramic proppants by adding solid wastes. International Journal of Applied Ceramic Technology, 2018, 15, 563-568.	2.1	18
20	Preparation and characterization of low-cost high-performance mullite-quartz ceramic proppants for coal bed methane wells. Science and Engineering of Composite Materials, 2018, 25, 957-961.	1.4	6
21	Microstructure and fracture mechanism of low density ceramic proppants. Materials Letters, 2018, 213, 92-94.	2.6	26
22	Effective reduction of sintering temperature and breakage ratio for a low ost ceramic proppant by feldspar addition. International Journal of Applied Ceramic Technology, 2018, 15, 191-196.	2.1	24
23	Solution combustion synthesis and enhanced gas sensing properties of porous In2O3/ZnO heterostructures. RSC Advances, 2017, 7, 34482-34487.	3.6	11
24	Photoluminescence Studies of Both the Neutral and Negatively Charged Nitrogen-Vacancy Center in Diamond. Microscopy and Microanalysis, 2016, 22, 108-112.	0.4	15
25	Sintering temperature dependence of low-cost, low-density ceramic proppant with high breakage resistance. Materials Letters, 2016, 180, 127-129.	2.6	47
26	Chemical bath deposition of Cu ₂ O quantum dots onto ZnO nanorod arrays for application in photovoltaic devices. RSC Advances, 2015, 5, 23401-23409.	3.6	69
27	Effects of pyrolusite additive on the microstructure and mechanical strength of corundum–mullite ceramics. Ceramics International, 2015, 41, 4294-4300.	4.8	41
28	Microwave-assisted hydrothermal synthesis of Cu/Cu ₂ O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature. Dalton Transactions, 2015, 44, 7811-7821.	3.3	81
29	Synthesis of Cu ₂ O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm, 2014, 16, 1149-1156.	2.6	132
30	Preparation and Dielectric Characterization of Leadâ€Free Niobate Glassâ€Ceramic Composites Added with <scp><scp>Lu</scp></scp> 2 <scp><scp>O</scp></scp> ₃ . Journal of the American Ceramic Society, 2014, 97, 2353-2356.	3.8	5
31	Facile hydrothermal synthesis of large scale ZnO nanorod arrays and their growth mechanism. Materials Letters, 2013, 107, 269-272.	2.6	14
32	Effects of holding time on structure and the properties of spodumene/mullite composite ceramics. International Journal of Applied Ceramic Technology, 0, , .	2.1	2
33	Preparation and characterization of aluminum borate whiskers reinforced ceramics with MnO 2 addition. International Journal of Applied Ceramic Technology, 0, , .	2.1	0
34	The influence of nitrogen doping on the thermal conductivity of diamond heat sink. Spectroscopy Letters, 0, , 1-6.	1.0	1