Yuichiro Mishima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910274/publications.pdf

Version: 2024-02-01

19	3,331	687220	839398
papers	citations	h-index	g-index
19 all docs	19 docs citations	19 times ranked	4316 citing authors
			<i>G</i>

#	Article	IF	CITATIONS
1	Ribosome slowdown triggers codonâ€mediated mRNA decay independently of ribosome quality control. EMBO Journal, 2022, 41, e109256.	3.5	25
2	Tethered Function Assay to Study RNA-Regulatory Proteins in Zebrafish. Methods in Molecular Biology, 2021, 2218, 347-354.	0.4	0
3	Protocol for Disome Profiling to Survey Ribosome Collision in Humans and Zebrafish. STAR Protocols, 2020, 1, 100168.	0.5	40
4	Deadenylation by the <scp>CCR</scp> 4â€ <scp>NOT</scp> complex contributes to the turnover of <i>hairy</i> êrelated <scp>mRNA</scp> s in the zebrafish segmentation clock. FEBS Letters, 2018, 592, 3388-3398.	1.3	9
5	PAINTing translation. Nature Chemical Biology, 2018, 14, 832-833.	3.9	1
6	Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal <scp>mRNA</scp> clearance in zebrafish. Genes To Cells, 2017, 22, 670-678.	0.5	10
7	Codon Usage and 3′ UTR Length Determine Maternal mRNA Stability in Zebrafish. Molecular Cell, 2016, 61, 874-885.	4.5	229
8	Roles of mRNA Fate Modulators Dhh1 and Pat1 in TNRC6-dependent Gene Silencing Recapitulated in Yeast. Journal of Biological Chemistry, 2015, 290, 8331-8347.	1.6	7
9	Elements and machinery of nonâ€coding <scp>RNA</scp> s: toward their taxonomy. EMBO Reports, 2014, 15, 489-507.	2.0	84
10	MicroRNAs Trigger Dissociation of eIF4AI and eIF4AII from Target mRNAs in Humans. Molecular Cell, 2014, 56, 79-89.	4.5	117
11	Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1104-1109.	3.3	86
12	Widespread roles of microRNAs during zebrafish development and beyond. Development Growth and Differentiation, 2012, 54, 55-65.	0.6	41
13	A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity. Science, 2010, 328, 1694-1698.	6.0	718
14	DAZL Relieves miRNA-Mediated Repression of Germline mRNAs by Controlling Poly(A) Tail Length in Zebrafish. PLoS ONE, 2009, 4, e7513.	1.1	85
15	Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes and Development, 2009, 23, 619-632.	2.7	149
16	miR-1-2 Gets to the Heart of the Matter. Cell, 2007, 129, 247-249.	13.5	42
17	Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science, 2006, 312, 75-79.	6.0	1,405
18	Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430. Current Biology, 2006, 16, 2135-2142.	1.8	280

#	Article	IF	CITATIONS
19	A novel gene, the protein product of which is mainly expressed in germline cells and in the dorsal structures of Xenopus. Development Genes and Evolution, 2004, 214, 89-95.	0.4	3