Dogukan Hazar Apaydin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials, 2015, 14, 1032-1039.	27.5	807
2	Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 1714-1723.	5.5	120
3	Hydrogenâ€Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis. Advanced Functional Materials, 2016, 26, 5248-5254.	14.9	115
4	Confining metal-halide perovskites in nanoporous thin films. Science Advances, 2017, 3, e1700738.	10.3	103
5	Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Organic Electronics, 2013, 14, 1720-1727.	2.6	99
6	Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Solar Energy Materials and Solar Cells, 2016, 157, 318-325.	6.2	69
7	Optimizing the organic solar cell efficiency: Role of the active layer thickness. Solar Energy Materials and Solar Cells, 2013, 113, 100-105.	6.2	65
8	Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone. Angewandte Chemie - International Edition, 2014, 53, 6819-6822.	13.8	64
9	Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide using Enzymes. Energy Technology, 2017, 5, 812-821.	3.8	64
10	Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Applied Catalysis B: Environmental, 2018, 229, 163-170.	20.2	63
11	Air-stable organic semiconductors based on 6,6′-dithienylindigo and polymers thereof. Journal of Materials Chemistry C, 2014, 2, 8089-8097.	5.5	56
12	Artificial Photosynthesis: Learning from Nature. ChemPhotoChem, 2018, 2, 148-160.	3.0	51
13	A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol. ChemElectroChem, 2014, 1, 1543-1548.	3.4	41
14	Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Organic Electronics, 2014, 15, 997-1001.	2.6	41
15	The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Solar Energy, 2018, 163, 215-223.	6.1	36
16	Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptorâ€ŧype conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 1933-1941.	2.3	34
17	Solution processable benzotriazole and fluorene containing copolymers for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 99, 321-326.	6.2	33
18	Synthesis and electrochemical properties of a new benzimidazole derivative as the acceptor unit in donor–acceptor–donor type polymers. Electrochimica Acta, 2012, 67, 224-229.	5.2	32

#	Article	IF	CITATIONS
19	Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synthetic Metals, 2016, 221, 67-74.	3.9	32
20	Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O ₂) Reduction to Hydrogen Peroxide (H ₂ O ₂)?. ACS Applied Energy Materials, 2020, 3, 10611-10618.	5.1	30
21	Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO ₂ . ChemPhysChem, 2017, 18, 3094-3116.	2.1	29
22	Anthraquinone thin-film electrodes for reversible CO ₂ capture and release. Journal of Materials Chemistry A, 2018, 6, 15095-15101.	10.3	27
23	Photoelectrocatalytic Synthesis of Hydrogen Peroxide by Molecular Copperâ€Porphyrin Supported on Titanium Dioxide Nanotubes. ChemCatChem, 2018, 10, 1793-1797.	3.7	26
24	An Anthraquinone/Carbon Fiber Composite as Cathode Material for Rechargeable Sodiumâ€lon Batteries. Batteries and Supercaps, 2018, 1, 160-168.	4.7	26
25	Systematic Investigation of Porphyrinâ€Thiophene Conjugates for Ternary Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1600957.	19.5	25
26	Improvement of Catalytic Activity by Nanofibrous CuInS ₂ for Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2016, 8, 31695-31701.	8.0	24
27	Benzotriazole and benzothiadiazole containing conjugated copolymers for organic solar cell applications. Polymer, 2012, 53, 1198-1202.	3.8	23
28	Using the Alkynyl-Substituted Rhenium(I) Complex (4,4′-Bisphenyl-Ethynyl-2,2′-Bipyridyl)Re(CO)3Cl as Catalyst for CO2 Reduction—Synthesis, Characterization, and Application. Electrocatalysis, 2015, 6, 185-197.	3.0	22
29	An electron-reservoir Re(I) complex for enhanced efficiency for reduction of CO2 to CO. Journal of Catalysis, 2018, 363, 191-196.	6.2	22
30	Spinâ€Forbidden Excitation: A New Approach for Triggering Photopharmacological Processes with Lowâ€Intensity NIR Light. ChemPhotoChem, 2017, 1, 378-382.	3.0	21
31	Electrochemical Capture and Release of CO ₂ in Aqueous Electrolytes Using an Organic Semiconductor Electrode. ACS Applied Materials & amp; Interfaces, 2017, 9, 12919-12923.	8.0	20
32	Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules, 2018, 23, 2271.	3.8	20
33	Electrochromism in multichromic conjugated polymers: Thiophene and azobenzene derivatives on the main chain. Journal of Electroanalytical Chemistry, 2012, 665, 52-57.	3.8	18
34	Photoelectrochemical Reduction of CO ₂ Using Third-Generation Conjugated Polymers. ChemistrySelect, 2016, 1, 1156-1162.	1.5	18
35	Inverted (p–i–n) perovskite solar cells using a low temperature processed TiO _x interlayer. RSC Advances, 2018, 8, 24836-24846.	3.6	17
36	Effect of layer thickness on the electrical parameters and conduction mechanisms of conjugated polymerâ€based heterojunction diode. Journal of Applied Polymer Science, 2017, 134, .	2.6	16

#	Article	IF	CITATIONS
37	Low and High Molecular Mass Dithienopyrrole–Naphthalene Bisimide Donor–Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour. Chemistry - A European Journal, 2017, 23, 2839-2851.	3.3	14
38	Analysis of the Ordering Effects in Anthraquinone Thin Films and Its Potential Application for Sodium Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 3745-3757.	3.1	14
39	The Main Electrical and Interfacial Properties of Benzotriazole and Fluorene Based Organic Devices. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 168-174.	2.2	13
40	Indigoidine – Biosynthesized organic semiconductor. Dyes and Pigments, 2019, 171, 107768.	3.7	13
41	Perylenetetracarboxylic Diimide as Diffusionâ€Less Electrode Material for Highâ€Rate Organic Naâ€lon Batteries. Chemistry - A European Journal, 2020, 26, 17559-17566.	3.3	12
42	Doping-Induced Polaron Formation and Solid-State Polymerization in Benzoporphyrin–Oligothiophene Conjugated Systems. Journal of Physical Chemistry C, 2017, 121, 24397-24407.	3.1	9
43	Photoinduced Energy Transfer from Poly(<i>N</i> â€vinylcarbazole) to Tricarbonylchloroâ€(2,2′â€bipyridyl)rhenium(I). ChemPhysChem, 2014, 15, 3634-3638.	2.1	8
44	Optimized Design Principles for Siliconâ€Coated Nanostructured Electrode Materials and their Application in Highâ€Capacity Lithiumâ€Ion Batteries. Energy Technology, 2017, 5, 2253-2264.	3.8	8
45	Dielectric and electrical properties of an organic device containing benzotriazole and fluorene bearing copolymer. Journal of Applied Polymer Science, 2013, 128, 1659-1664.	2.6	7
46	Molecular catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 353-395.	3.2	6
47	Synthesis and investigation of tetraphenyltetrabenzoporphyrins for electrocatalytic reduction of carbon dioxide. Sustainable Energy and Fuels, 2018, 2, 2747-2753.	4.9	6
48	Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbonâ€Based Electrodes with Potential Application for Organic Naâ€Ion Batteries. Israel Journal of Chemistry, 2022, 62, .	2.3	4
49	Inorganic assembly catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 481-507.	3.2	2
50	Photocatalysis: Hydrogen-Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis (Adv. Funct. Mater. 29/2016). Advanced Functional Materials, 2016, 26, 5247-5247.	14.9	1
51	Artificial Photosynthesis: Learning from Nature. ChemPhotoChem, 2018, 2, 109-109.	3.0	1
52	An Anthraquinone/Carbon Fiber Composite as Cathode Material for Rechargeable Sodiumâ€lon Batteries. Batteries and Supercaps, 2018, 1, 130-130.	4.7	1
53	A Beginner's Guide to Organic Semiconductor Photoelectrodes for the Reduction of Carbon Dioxide. Israel Journal of Chemistry, 0, , .	2.3	1
54	Nanometer-Thick Thiophene Monolayers as Templates for the Gas-Phase Epitaxy of Poly(3,4-Ethylenedioxythiophene) Films on Gold: Implications for Organic Electronics. ACS Applied Nano Materials, 2022, 5, 3194-3200.	5.0	1

#	Article	IF	CITATIONS
55	Photo- and electroluminescence behavior of biphenyl derivative in blends with poly(vinylcarbazole). Turkish Journal of Chemistry, 2013, , .	1.2	0