Xueqing Ba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910081/publications.pdf Version: 2024-02-01

XUEOING RA

#	Article	IF	CITATIONS
1	The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cellular and Molecular Life Sciences, 2022, 79, 60.	5.4	35
2	Cell-Penetrating Peptide TAT-HuR-HNS3 Suppresses Proinflammatory Gene Expression via Competitively Blocking Interaction of HuR with Its Partners. Journal of Immunology, 2022, 208, 2376-2389.	0.8	2
3	Innate Immune Responses to RSV Infection Facilitated by OGG1, an Enzyme Repairing Oxidatively Modified DNA Base Lesions. Journal of Innate Immunity, 2022, 14, 593-614.	3.8	10
4	Poly(ADP-ribosyl)ation enhances HuR oligomerization and contributes to pro-inflammatory gene mRNA stabilization. Cellular and Molecular Life Sciences, 2021, 78, 1817-1835.	5.4	17
5	Enzymatically inactive OGG1 binds to DNA and steers base excision repair toward gene transcription. FASEB Journal, 2020, 34, 7427-7441.	0.5	33
6	ELTâ€2 promotes <i>O</i> â€GlcNAc transferase OGTâ€1 expression to modulate <i>Caenorhabditis elegans</i> lifespan. Journal of Cellular Biochemistry, 2020, 121, 4898-4907.	2.6	5
7	câ€ʿAblâ€ʿmediated tyrosine phosphorylation of DNA damage response proteins and implications in important cellular functions (Review). Molecular Medicine Reports, 2020, 22, 612-619.	2.4	6
8	CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3. Cell Death and Disease, 2019, 10, 598.	6.3	40
9	Epigenetic regulation of TIMP1 expression by 8â€oxoguanine DNA glycosylaseâ€1 binding to DNA:RNA hybrid. FASEB Journal, 2019, 33, 14159-14170.	0.5	14
10	The Role of PARPs in Inflammation—and Metabolic—Related Diseases: Molecular Mechanisms and Beyond. Cells, 2019, 8, 1047.	4.1	71
11	RhoGDI2 positively regulates the Rho GTPases activation in response to the β2 outsideâ€in signaling in T cells adhesion and migration on ICAMâ€1. Journal of Leukocyte Biology, 2019, 106, 431-446.	3.3	7
12	Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cellular and Molecular Life Sciences, 2019, 76, 3283-3299.	5.4	32
13	c-Abl–Mediated Tyrosine Phosphorylation of PARP1 Is Crucial for Expression of Proinflammatory Genes. Journal of Immunology, 2019, 203, 1521-1531.	0.8	29
14	Arginine methylation of SKN-1 promotes oxidative stress resistance in Caenorhabditis elegans. Redox Biology, 2019, 21, 101111.	9.0	21
15	Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression. Cell Reports, 2018, 22, 2716-2729.	6.4	25
16	The establishment of methods for free PAR generation and PAR reader detection. Molecular and Cellular Probes, 2018, 39, 57-60.	2.1	2
17	8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biology, 2018, 14, 669-678.	9.0	179
18	Small-molecule inhibitor of OGC1 suppresses proinflammatory gene expression and inflammation. Science, 2018, 362, 834-839.	12.6	156

XUEQING BA

#	Article	IF	CITATIONS
19	Chemokine (Câ€Xâ€C motif) ligand 1 and <scp>CXCL</scp> 2 produced by tumor promote the generation of monocytic myeloidâ€derived suppressor cells. Cancer Science, 2018, 109, 3826-3839.	3.9	50
20	Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biology, 2018, 18, 43-53.	9.0	47
21	The roles of base excision repair enzyme OGG1 in gene expression. Cellular and Molecular Life Sciences, 2018, 75, 3741-3750.	5.4	67
22	OGC1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death and Disease, 2018, 9, 628.	6.3	55
23	OGG1-DNA interactions facilitate NF-κB binding to DNA targets. Scientific Reports, 2017, 7, 43297.	3.3	50
24	PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR. Nature Communications, 2017, 8, 14632.	12.8	60
25	Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1058-L1068.	2.9	15
26	8-Oxoguanine DNA glycosylase1–driven DNA repair—A paradoxical role in lung aging. Mechanisms of Ageing and Development, 2017, 161, 51-65.	4.6	11
27	Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1β-mediated increase in E-selectin expression. International Journal of Cancer, 2017, 140, 1370-1383.	5.1	71
28	Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression. Journal of Biological Chemistry, 2016, 291, 25553-25566.	3.4	151
29	Pathophysiology of bronchoconstriction. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 59-67.	2.3	20
30	BRG1 promotes DNA double-strand break repair by facilitating the replacement of RPA with RAD51. Journal of Cell Science, 2015, 128, 317-30.	2.0	65
31	Lipid raft-associated <i>β</i> -adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin. Journal of Leukocyte Biology, 2015, 97, 297-306.	3.3	11
32	Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes. Free Radical Biology and Medicine, 2015, 81, 107-118.	2.9	35
33	Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling. Free Radical Biology and Medicine, 2015, 89, 20-33.	2.9	32
34	8-Oxoguanine DNA glycosylase-1-driven DNA base excision repair. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 89-97.	2.3	26
35	17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha. Toxicology Letters, 2015, 232, 1-9.	0.8	17
36	The Role of 8-Oxoguanine DNA Glycosylase-1 in Inflammation. International Journal of Molecular Sciences, 2014, 15, 16975-16997.	4.1	96

XUEQING BA

#	Article	IF	CITATIONS
37	8-Oxoguanine DNA glycosylase-1-mediated DNA repair is associated with Rho GTPase activation and α-smooth muscle actin polymerization. Free Radical Biology and Medicine, 2014, 73, 430-438.	2.9	58
38	8-Oxoguanine DNA Glycosylase-1 Augments Proinflammatory Gene Expression by Facilitating the Recruitment of Site-Specific Transcription Factors. Journal of Immunology, 2014, 192, 2384-2394.	0.8	105
39	Innate Inflammation Induced by the 8-Oxoguanine DNA Glycosylase-1–KRAS–NF-κB Pathway. Journal of Immunology, 2014, 193, 4643-4653.	0.8	85
40	Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation. DNA Repair, 2013, 12, 18-26.	2.8	71
41	Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair. DNA Repair, 2013, 12, 856-863.	2.8	60
42	8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1. Free Radical Biology and Medicine, 2013, 61, 384-394.	2.9	76
43	p85-RhoGDI2, a novel complex, is required for PSGL-1-induced β1 integrin-mediated lymphocyte adhesion to VCAM-1. International Journal of Biochemistry and Cell Biology, 2013, 45, 2764-2773.	2.8	7
44	Lipid rafts control human melanoma cell migration by regulating focal adhesion disassembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3195-3205.	4.1	42
45	Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering. International Journal of Biochemistry and Cell Biology, 2013, 45, 1679-1689.	2.8	31
46	c-Abl tyrosine kinase plays a critical role in β2 integrin-dependent neutrophil migration by regulating Vav1 activity. Journal of Leukocyte Biology, 2013, 93, 611-622.	3.3	27
47	Lipopolysaccharide activates ERK–PARP-1–RelA pathway and promotes nuclear factor–κB transcription in murine macrophages. Human Immunology, 2012, 73, 439-447.	2.4	51
48	Signaling Mechanism of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Inflammatory Diseases. American Journal of Pathology, 2011, 178, 946-955.	3.8	169
49	Trypanosoma cruzi Induces the Reactive Oxygen Species-PARP-1-RelA Pathway for Up-regulation of Cytokine Expression in Cardiomyocytes. Journal of Biological Chemistry, 2010, 285, 11596-11606.	3.4	107
50	c-Abl Kinase Is Required for Î ² 2 Integrin-Mediated Neutrophil Adhesion. Journal of Immunology, 2009, 182, 3233-3242.	0.8	27
51	L-selectin ligation-induced CSF-1 gene transcription is regulated by AP-1 in a c-Abl kinase-dependent manner. Human Immunology, 2008, 69, 501-509.	2.4	11
52	câ€Abl is required for the signaling transduction induced by Lâ€selectin ligation. European Journal of Immunology, 2007, 37, 3246-3258.	2.9	19
53	c-Abl Is Involved in the F-Actin Assembly Triggered by L-Selectin Crosslinking. Journal of Biochemistry, 2006, 140, 229-235.	1.7	16
54	Signaling function of PSGL-1 in neutrophil: Tyrosine-phosphorylation-dependent and c-Abl-involved alteration in the F-actin-based cytoskeleton. Journal of Cellular Biochemistry, 2005, 94, 365-373.	2.6	37