Gerd A Folberth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2910028/publications.pdf

Version: 2024-02-01

45 papers

6,410 citations

126708 33 h-index 223531 46 g-index

86 all docs 86 docs citations

86 times ranked 7647 citing authors

#	Article	IF	Citations
1	The role of future anthropogenic methane emissions in air quality and climate. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	18
2	CO ₂ fertilization of crops offsets yield losses due to future surface ozone damage and climate change. Environmental Research Letters, 2022, 17, 074007.	2.2	12
3	Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
4	Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1. Atmospheric Chemistry and Physics, 2021, 21, 1211-1243.	1.9	29
5	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	1.9	39
6	Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model. Geoscientific Model Development, 2021, 14, 6515-6539.	1.3	5
7	Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn) Tj ETQq1	1 0.78431	14 rgBT /Ov <mark>er</mark>
8	Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations. Geoscientific Model Development, 2020, 13, 6383-6423.	1.3	83
9	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	1.3	448
10	Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons – a focus on the Indian subcontinent. Atmospheric Chemistry and Physics, 2019, 19, 6437-6458.	1.9	23
11	Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmospheric Chemistry and Physics, 2019, 19, 1301-1326.	1.9	41
12	The impact of future emission policies on tropospheric ozone using a parameterised approach. Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.	1.9	47
13	Large but decreasing effect of ozone on the European carbon sink. Biogeosciences, 2018, 15, 4245-4269.	1.3	44
14	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	1.9	54
15	Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nature Communications, 2018, 9, 3182.	5.8	75
16	Future global mortality from changes in air pollution attributable to climate change. Nature Climate Change, 2017, 7, 647-651.	8.1	177
17	A description and evaluation of an air quality model nested within global and regional composition-climate models using MetUM. Geoscientific Model Development, 2017, 10, 3941-3962.	1.3	14
18	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	1.3	159

#	Article	IF	Citations
19	The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 2016, 16, 9847-9862.	1.9	101
20	INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. Geoscientific Model Development, 2016, 9, 2685-2700.	1.3	37
21	Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmospheric Chemistry and Physics, 2015, 15, 2791-2804.	1.9	60
22	Megacities and climate change – A brief overview. Environmental Pollution, 2015, 203, 235-242.	3.7	57
23	Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geoscientific Model Development, 2014, 7, 41-91.	1.3	191
24	Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK. Atmospheric Environment, 2014, 82, 410-417.	1.9	48
25	Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.	2.2	381
26	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	1.3	388
27	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	1.9	288
28	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 3063-3085.	1.9	361
29	Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics, 2013, 13, 2563-2587.	1.9	257
30	Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.	1.9	61
31	Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality. Atmospheric Chemistry and Physics, 2012, 12, 919-939.	1.9	58
32	Global radiative forcing and megacities. Urban Climate, 2012, 1, 4-19.	2.4	20
33	Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. Journal of Geophysical Research, 2012, 117, .	3.3	69
34	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	18.7	428
35	New Directions: Atmospheric methane removal as a way to mitigate climate change?. Atmospheric Environment, 2010, 44, 3343-3345.	1.9	37
36	Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics, 2010, 48, .	9.0	199

#	Article	lF	CITATIONS
37	Multimodel estimates of intercontinental sourceâ€receptor relationships for ozone pollution. Journal of Geophysical Research, 2009, 114, .	3.3	430
38	Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	118
39	Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmospheric Chemistry and Physics, 2006, 6, 2273-2319.	1.9	213
40	Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmospheric Chemistry and Physics, 2006, 6, 2129-2146.	1.9	301
41	On the role of atmospheric chemistry in the global CO2budget. Geophysical Research Letters, 2005, 32,	1.5	32
42	Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophysical Research Letters, 2005, 32, .	1.5	90
43	Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophysical Research Letters, 2005, 32, .	1.5	151
44	The annual course of TCA formation in the lower troposphere: a modeling study. Environmental Pollution, 2003, 124, 389-405.	3.7	12
45	Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science, 2003, 300, 1538-1542.	6.0	551