
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Biological Evaluation of New 8-Heterocyclic Xanthine Derivatives as Highly Potent and Selective Human A2BAdenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 1434-1447.	6.4	359
2	DNA minor groove binders as potential antitumor and antimicrobial agents. Medicinal Research Reviews, 2004, 24, 475-528.	10.5	343
3	Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain, 2011, 152, 1621-1631.	4.2	264
4	Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angewandte Chemie - International Edition, 2011, 50, 12551-12554.	13.8	236
5	The †headache tree' via umbellulone and TRPA1 activates the trigeminovascular system. Brain, 2012, 135, 376-390.	7.6	163
6	Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as Emerging Target for Novel Analgesics and Anti-Inflammatory Agents. Journal of Medicinal Chemistry, 2010, 53, 5085-5107.	6.4	152
7	Synthesis and Biological Evaluation of 2- and 3-Aminobenzo[b]thiophene Derivatives as Antimitotic Agents and Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2007, 50, 2273-2277.	6.4	131
8	Transient receptor potential ankyrin receptor 1 is a novel target for proâ€ŧussive agents. British Journal of Pharmacology, 2009, 158, 1621-1628.	5.4	117
9	Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity. Journal of Medicinal Chemistry, 2012, 55, 475-488.	6.4	109
10	Activation of TRPA1 on dural afferents: A potential mechanism of headache pain. Pain, 2012, 153, 1949-1958.	4.2	108
11	Acetaminophen, <i>via</i> its reactive metabolite <i>N</i> -acetyl- <i>p</i> -benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB Journal, 2010, 24, 4904-4916.	0.5	102
12	Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorganic and Medicinal Chemistry, 2008, 16, 5367-5376.	3.0	93
13	Synthesis and Biological Evaluation of 1-Methyl-2-(3′,4′,5′-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 1464-1468.	6.4	90
14	History and Perspectives of A _{2A} Adenosine Receptor Antagonists as Potential Therapeutic Agents. Medicinal Research Reviews, 2015, 35, 790-848.	10.5	88
15	The P2X ₇ receptor as a therapeutic target. Expert Opinion on Therapeutic Targets, 2008, 12, 647-661.	3.4	82
16	Synthesis and Biological Evaluation of 2-(Alkoxycarbonyl)-3-Anilinobenzo[<i>b</i>]thiophenes and Thieno[2,3- <i>b</i>]pyridines as New Potent Anticancer Agents. Journal of Medicinal Chemistry, 2013, 56, 2606-2618.	6.4	80
17	TRP channels as therapeutic targets in airway disorders: a patent review. Expert Opinion on Therapeutic Patents, 2012, 22, 663-695.	5.0	75
18	Adenosine Modulates HIF-1α, VEGF, IL-8, and Foam Cell Formation in a Human Model of Hypoxic Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 90-97.	2.4	71

#	Article	IF	CITATIONS
19	Design, Synthesis, and Biological Evaluation of C9- and C2-Substituted Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as New A2Aand A3Adenosine Receptors Antagonists. Journal of Medicinal Chemistry, 2003, 46, 1229-1241.	6.4	70
20	The <scp>TRPA</scp> 1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. British Journal of Pharmacology, 2015, 172, 3397-3411.	5.4	65
21	N6-[(Hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5′-N-ethylcarboxamido-adenosines: The first example of adenosine-related structures with potent agonist activity at the human A2B adenosine receptor. Bioorganic and Medicinal Chemistry, 2007, 15, 2514-2527.	3.0	62
22	Synthesis and Biological Evaluation of 2-Amino-3-(3â€~,4â€~,5â€~-trimethoxybenzoyl)-5-aryl Thiophenes as a New Class of Potent Antitubulin Agents. Journal of Medicinal Chemistry, 2006, 49, 3906-3915.	6.4	61
23	New 2-Arylpyrazolo[4,3-c]quinoline Derivatives as Potent and Selective Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 5001-5008.	6.4	58
24	Discovery and Optimization of a Series of 2-Aryl-4-Amino-5-(3′,4′,5′-trimethoxybenzoyl)Thiazoles as Nove Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 5433-5445.	6.4	57
25	Hybrid molecules between distamycin A and active moieties of antitumor agents. Bioorganic and Medicinal Chemistry, 2007, 15, 17-35.	3.0	56
26	Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorganic and Medicinal Chemistry, 2012, 20, 7083-7094.	3.0	56
27	New strategies for the synthesis of A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 4161-4169.	3.0	55
28	Synthesis and Biological Evaluation of 2-(3â€~,4â€~,5â€~-Trimethoxybenzoyl)-3-Amino 5-Aryl Thiophenes as a New Class of Tubulin Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6425-6428.	6.4	53
29	Medicinal Chemistry of the A3 Adenosine Receptor: Agonists, Antagonists, and Receptor Engineering. Handbook of Experimental Pharmacology, 2009, , 123-159.	1.8	47
30	Synthesis and Biological Evaluation of 2-Amino-3-(4-Chlorobenzoyl)-4-[<i>N</i> -(Substituted) Piperazin-1-yl]Thiophenes as Potent Allosteric Enhancers of the A _₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2008, 51, 5875-5879.	6.4	46
31	New Pyrrolo[2,1-f]purine-2,4-dione and Imidazo[2,1-f]purine-2,4-dione Derivatives as Potent and Selective Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 4697-4701.	6.4	45
32	Medicinal Chemistry of A ₃ Adenosine Receptor Modulators: Pharmacological Activities and Therapeutic Implications. Journal of Medicinal Chemistry, 2012, 55, 5676-5703.	6.4	45
33	The blockade of transient receptor potential ankirin 1 (<scp>TRPA</scp> 1) signalling mediates antidepressant―and anxiolyticâ€ike actions in mice. British Journal of Pharmacology, 2014, 171, 4289-4299.	5.4	45
34	Concise Synthesis and Biological Evaluation of 2-Aroyl-5-Amino Benzo[<i>b</i>]thiophene Derivatives As a Novel Class of Potent Antimitotic Agents. Journal of Medicinal Chemistry, 2013, 56, 9296-9309.	6.4	44
35	Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharmaceutical Patent Analyst, 2015, 4, 75-94.	1.1	42
36	Hybrid molecules containing benzo[4,5]imidazo[1,2-d][1,2,4]thiadiazole and α-bromoacryloyl moieties as potent apoptosis inducers on human myeloid leukaemia cells. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2844-2848.	2.2	41

#	Article	IF	CITATIONS
37	Discovery of Novel 1,3,8-Triazaspiro[4.5]decane Derivatives That Target the c Subunit of F ₁ /F _O -Adenosine Triphosphate (ATP) Synthase for the Treatment of Reperfusion Damage in Myocardial Infarction. Journal of Medicinal Chemistry, 2018, 61, 7131-7143.	6.4	41
38	Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorganic and Medicinal Chemistry, 2014, 22, 5097-5109.	3.0	40
39	Allosteric Enhancers for A1 Adenosine Receptor. Mini-Reviews in Medicinal Chemistry, 2007, 7, 559-569.	2.4	39
40	Recent developments in the field of A2A and A3 adenosine receptor antagonists. European Journal of Medicinal Chemistry, 2003, 38, 367-382.	5.5	36
41	7-Oxo-[1,4]oxazino[2,3,4- <i>ij</i>]quinoline-6-carboxamides as Selective CB ₂ Cannabinoid Receptor Ligands: Structural Investigations around a Novel Class of Full Agonists. Journal of Medicinal Chemistry, 2012, 55, 6608-6623.	6.4	36
42	[3H]-MRE 2029-F20, a selective antagonist radioligand for the human A2B adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3607-3610.	2.2	35
43	Recent improvements in the development of A2B adenosine receptor agonists. Purinergic Signalling, 2009, 5, 3-19.	2.2	34
44	Recent improvements in the development of A2B adenosine receptor agonists. Purinergic Signalling, 2008, 4, 287-303.	2.2	32
45	Recent developments in the field of A3 adenosine receptor antagonists. Drug Development Research, 2003, 58, 315-329.	2.9	28
46	Synthesis and Biological Evaluation of 2-Amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. Effect of the 5-Modification on Allosteric Enhancer Activity at the A1 Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55, 7719-7735.	6.4	27
47	The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel. Pharmacological Research, 2019, 142, 127-139.	7.1	27
48	Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2012, 20, 1046-1059.	3.0	26
49	Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A ₁ Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. Journal of Medicinal Chemistry, 2014, 57, 7673-7686.	6.4	26
50	DNA minor-groove binders. Design, synthesis and biological evaluation of ligands structurally related to CC-1065, distamycin, and anthramycin. Pure and Applied Chemistry, 2003, 75, 187-194.	1.9	25
51	7-Substituted-pyrrolo[3,2-d]pyrimidine-2,4-dione derivatives as antagonists of the transient receptor potential ankyrin 1 (TRPA1) channel: A promising approach for treating pain and inflammation. Bioorganic and Medicinal Chemistry, 2012, 20, 1690-1698.	3.0	25
52	Synthesis and Biological Evaluation of Novel 1-Deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]- 9H-purin-9-yl]-N-ethyl-β-d-ribofuranuronamide Derivatives as Useful Templates for the Development of A2BAdenosine Receptor Agonists. Journal of Medicinal Chemistry, 2007, 50, 374-380.	6.4	24
53	Discovery of 7-Oxopyrazolo[1,5- <i>a</i>]pyrimidine-6-carboxamides as Potent and Selective CB ₂ Cannabinoid Receptor Inverse Agonists. Journal of Medicinal Chemistry, 2013, 56, 4482-4496.	6.4	24
54	Synthesis and Biological Evaluation of Novel N6-[4-(Substituted)sulfonamidophenylcarbamoyl]adenosine-5â€~-uronamides as A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2004, 47, 5535-5540.	6.4	23

#	Article	IF	CITATIONS
55	Synthesis of a new series of pyrazolo[1,5â€ <i>a</i>]pyrimidines structurally related to zaleplon. Journal of Heterocyclic Chemistry, 2007, 44, 355-361.	2.6	22
56	Microwave-assisted synthesis of thieno[2,3-c]pyridine derivatives as a new series of allosteric enhancers at the adenosine A1 receptor. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5530-5533.	2.2	21
57	Ligands for A2B Adenosine Receptor Subtype. Current Medicinal Chemistry, 2006, 13, 3467-3482.	2.4	20
58	Novel 1,3-Dipropyl-8-(3-benzimidazol-2-yl-methoxy-1-methylpyrazol-5-yl)xanthines as Potent and Selective A _{2B} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 797-811.	6.4	19
59	Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Template: Organic and Medicinal Chemistry Approach. Current Organic Chemistry, 2006, 10, 259-275.	1.6	18
60	Synthesis and preliminary biological evaluation of new anti-tubulin agents containing different benzoheterocycles. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4048-4052.	2.2	17
61	Synthesis and Biological Evaluation of 2-aroyl-4-phenyl-5- hydroxybenzofurans as a New Class of Antitubulin Agents. Medicinal Chemistry, 2008, 4, 558-564.	1.5	17
62	Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers ofÂthe A1 adenosine receptor. European Journal of Medicinal Chemistry, 2013, 67, 409-427.	5.5	17
63	Forensic Use of A Subtropical Blowfly: TheÂFirst Case Indicating Minimum <i>Postmortem</i> Interval (<scp>mPMI</scp>) in Southern Brazil and First Record of <i>Sarconesia Chlorogaster</i> from a Human Corpse. Journal of Forensic Sciences, 2015, 60, S257-60.	1.6	17
64	Structure–activity relationship studies of a new series of imidazo[2,1-f]purinones as potent and selective A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 10281-10294.	3.0	16
65	Design, Synthesis, and Pharmacological Properties of New Heteroarylpyridine/Heteroarylpyrimidine Derivatives as CB ₂ Cannabinoid Receptor Partial Agonists. Journal of Medicinal Chemistry, 2013, 56, 1098-1112.	6.4	16
66	Design, synthesis, <i>in vitro</i> antiproliferative activity and apoptosis-inducing studies of 1-(3′,4′,5′-trimethoxyphenyl)-3-(2′-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1225-1238.	5.2	16
67	Role of TRPA1 receptors in skin inflammation induced by volatile chemical irritants in mice. European Journal of Pharmacology, 2019, 858, 172460.	3.5	16
68	Synthesis and Biological Activity of Peptide α-Ketoamide Derivatives as Proteasome Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1086-1092.	2.8	16
69	Novel 8-heterocyclyl xanthine derivatives in drug development – an update. Expert Opinion on Drug Discovery, 2007, 2, 1161-1183.	5.0	15
70	Design, Synthesis, and Biological Evaluation of Novel 2-((2-(4-(Substituted)phenylpiperazin-1-yl)ethyl)amino)-5â€2- <i>N</i> Potent and Selective Agonists of the A _{2A} Adenosine Receptor. Journal of Medicinal Chemistry, 2015, 58, 3253-3267.	6.4	15
71	Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 73-83.	2.5	15
72	Discovery of 8-methoxypyrazino[1,2-a]indole as a New Potent Antiproliferative Agent Against Human Leukemia K562 Cells. A Structure-Activity Relationship Study. Letters in Drug Design and Discovery, 2009, 6, 298-303.	0.7	15

#	Article	IF	CITATIONS
73	New 2-Heterocyclyl-imidazo[2,1- <i>i</i>]purin-5-one Derivatives as Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2011, 54, 5205-5220.	6.4	14
74	Structure–activity relationships of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophenes. Part 2: Probing the influence of diverse substituents at the phenyl of the arylpiperazine moiety on allosteric enhancer activity at the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 996-1007.	3.0	14
75	α-Halogenoacrylic Derivatives of Antitumor Agents. Mini-Reviews in Medicinal Chemistry, 2009, 9, 81-94.	2.4	13
76	αâ€Bromoacrylamido Nâ€Substituted Isatin Derivatives as Potent Inducers of Apoptosis in Human Myeloid Leukemia Cells. ChemMedChem, 2009, 4, 1668-1676.	3.2	13
77	Synthesis and biological evaluation of novel 2-amino-3-aroyl-4-neopentyl-5-substituted thiophene derivatives as allosteric enhancers of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 148-166.	3.0	12
78	Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opinion on Therapeutic Patents, 2017, 27, 347-362.	5.0	12
79	From Tyrosine to Glycine:  Synthesis and Biological Activity of Potent Antagonists of the Purinergic P2X7 Receptor. Journal of Medicinal Chemistry, 2007, 50, 3706-3715.	6.4	11
80	1,3-Dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 2419-2430.	3.0	11
81	Water-Soluble Pyrazolo[4,3- <i>e</i>][1,2,4]triazolo[1,5- <i>c</i>]pyrimidines as Human A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 5380-5390.	6.4	11
82	Naphthoquinone amino acid derivatives, synthesis and biological activity as proteasome inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 865-877.	5.2	10
83	Novel Mixed NOP/Opioid Receptor Peptide Agonists. Journal of Medicinal Chemistry, 2021, 64, 6656-6669.	6.4	7
84	Microwave-Assisted Synthesis of Substituted 2,4-Diarylthiazoles and their Evaluation as Anticancer Agents. Letters in Drug Design and Discovery, 2007, 4, 464-466.	0.7	6
85	Structure- and conformation-activity studies of nociceptin/orphanin FQ receptor dimeric ligands. Scientific Reports, 2017, 7, 45817.	3.3	6
86	Pharmacological profile of the neuropeptide S receptor: Dynamic mass redistribution studies. Pharmacology Research and Perspectives, 2018, 6, e00445.	2.4	6
87	Biased Agonism at Nociceptin/Orphanin FQ Receptors: A Structure Activity Study on N/OFQ(1–13)-NH ₂ . Journal of Medicinal Chemistry, 2020, 63, 10782-10795.	6.4	6
88	Synthesis and Biological Evaluation of Pyrazolo[3,4- <i>b</i>]pyridin-4-ones as a New Class of Topoisomerase II Inhibitors. Medicinal Chemistry, 2015, 11, 342-353.	1.5	6
89	NOP-Targeted Peptide Ligands. Handbook of Experimental Pharmacology, 2018, 254, 17-36.	1.8	5
90	Structure–Activity Relationship Studies on Oxazolo[3,4- <i>a</i>]pyrazine Derivatives Leading to the Discovery of a Novel Neuropeptide S Receptor Antagonist with Potent <i>In Vivo</i> Activity. Journal of Medicinal Chemistry, 2021, 64, 4089-4108.	6.4	5

#	Article	IF	CITATIONS
91	Identification of small-molecule urea derivatives as PTPC modulators targeting the c subunit of F1/Fo-ATP synthase. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128822.	2.2	5
92	Recent improvements in the field of A3adenosine receptor ligands. Expert Opinion on Therapeutic Patents, 2005, 15, 1507-1519.	5.0	4
93	Tetrabranched Hetero-Conjugated Peptides as Bifunctional Agonists of the NOP and Mu Opioid Receptors. Bioconjugate Chemistry, 2019, 30, 2444-2451.	3.6	4
94	New heterocyclic ligands for the adenosine receptors P1 and for the ATP receptors P2. Il Farmaco, 2005, 60, 185-202.	0.9	3
95	Synthesis and Biological Evaluation of 2-amino-3-(3, 4, 5-trimethoxyphenylsulfonyl)-5-aryl thiophenes as a New Class of Antitubulin Agents. Medicinal Chemistry, 2007, 3, 507-512.	1.5	3
96	A3 Adenosine Receptor Antagonists: History and Future Perspectives. , 2010, , 121-147.		3
97	Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorganic Chemistry, 2021, 112, 104919.	4.1	3
98	Design, Synthesis and Biological Evaluation of Hybrid Molecules Containing Conjugated Styryl Ketone and α-Bromoacryloyl Moieties. Letters in Drug Design and Discovery, 2012, 9, 140-152.	0.7	2
99	Hybrid molecules based on distamycin A as potential antitumor agents. Arkivoc, 2006, 2006, 20-34.	0.5	2
100	Design, Synthesis and Growth Inhibition Activity of Bis-Epoxyethyl Derivatives of Stallimycin Modified on the Amidino Moiety. Medicinal Chemistry Research, 2004, 13, 282-296.	2.4	1
101	Discovery of Novel Fetal Hemoglobin Inducers through Small Chemical Library Screening. International Journal of Molecular Sciences, 2020, 21, 7426.	4.1	1
102	Recent Developments in the Field of A2A and A3 Adenosine Receptor Antagonists. ChemInform, 2003, 34, no.	0.0	0
103	DNA Minor Groove Binders as Potential Antitumor and Antimicrobial Agents. ChemInform, 2004, 35, no.	0.0	0
104	New Heterocyclic Ligands for the Adenosine Receptors P1 and for the ATP Receptors P2. ChemInform, 2005, 36, no.	0.0	0