Laura J Niedernhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909409/publications.pdf

Version: 2024-02-01

١			23567	13771
	152	18,300	58	129
	papers	citations	h-index	g-index
	157	157	157	17093
	137	137	137	17073
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS Journal, 2023, 290, 1362-1383.	4.7	140
2	Extending human healthspan and longevity: a symposium report. Annals of the New York Academy of Sciences, 2022, 1507, 70-83.	3.8	18
3	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S34-S46.	2.1	8
4	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
5	Targeted clearance of <i>p21</i> pâ€but not <i>p16</i> p3€positive senescent cells prevents radiationâ€induced osteoporosis and increased marrow adiposity. Aging Cell, 2022, 21, e13602.	6.7	40
6	The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Frontiers in Immunology, 2022, 13, 834889.	4.8	6
7	PodoCount: A Robust, Fully Automated, Whole-Slide Podocyte Quantification Tool. Kidney International Reports, 2022, 7, 1377-1392.	0.8	7
8	Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. Journal of the National Cancer Institute, 2021, 113, 112-122.	6.3	57
9	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annual Review of Pharmacology and Toxicology, 2021, 61, 779-803.	9.4	151
10	Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence., 2021, 221, 107751.		22
11	Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1895-1905.	3.6	113
12	Mesenchymal stem cellâ€derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell, 2021, 20, e13337.	6.7	63
13	Increased insulin sensitivity and diminished pancreatic beta-cell function in DNA repair deficient Ercc1 mice. Metabolism: Clinical and Experimental, 2021, 117, 154711.	3.4	9
14	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156
15	The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers, 2021, 13, 2241.	3.7	8
16	An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.	27.8	368
17	Senolytics reduce coronavirus-related mortality in old mice. Science, 2021, 373, .	12.6	184
18	Ending a diagnostic odyssey: Moving from exome to genome to identify cockayne syndrome. Molecular Genetics & Cenomic Medicine, 2021, 9, e1623.	1.2	3

#	Article	IF	Citations
19	Genetic signature of human longevity in PKC and NFâ€PB signaling. Aging Cell, 2021, 20, e13362.	6.7	12
20	Role of Cellular Senescence in Type II Diabetes. Endocrinology, 2021, 162, .	2.8	36
21	Fisetin for <scp>COVID</scp> â€19 in skilled nursing facilities: Senolytic trials in the <scp>COVID</scp> era. Journal of the American Geriatrics Society, 2021, 69, 3023-3033.	2.6	35
22	A conversation with Judith Campisi: Leader in the field of aging research. Ageing Research Reviews, 2021, 69, 101366.	10.9	1
23	Case Report: Identification of a Heterozygous XPA c.553C>T Mutation Causing Neurological Impairment in a Case of Xeroderma Pigmentosum Complementation Group A. Frontiers in Genetics, 2021, 12, 717361.	2.3	1
24	Rare genetic coding variants associated with human longevity and protection against age-related diseases. Nature Aging, 2021, 1, 783-794.	11.6	22
25	SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging, 2021, 13, 21838-21854.	3.1	51
26	Senotherapeutics: Experimental therapy of cellular senescence. , 2021, , 251-284.		0
27	DNA damageâ€"how and why we age?. ELife, 2021, 10, .	6.0	184
28	Recent advances in the discovery of senolytics. Mechanisms of Ageing and Development, 2021, 200, 111587.	4.6	41
29	Novel small molecule inhibition of IKK/NFâ€ÎºB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell, 2021, 20, e13486.	6.7	24
30	Molecular damage in aging. Nature Aging, 2021, 1, 1096-1106.	11.6	51
31	Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. Molecular Therapy, 2020, 28, 490-502.	8.2	64
32	Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson–Gilford Progeria Syndrome. Aging Cell, 2020, 19, e13152.	6.7	41
33	Genetics of extreme human longevity to guide drug discovery for healthy ageing. Nature Metabolism, 2020, 2, 663-672.	11.9	32
34	Attenuation of ataxia telangiectasia mutated signalling mitigates ageâ€associated intervertebral disc degeneration. Aging Cell, 2020, 19, e13162.	6.7	18
35	Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. GeroScience, 2020, 42, 951-961.	4.6	48
36	Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell, 2020, 19, e13094.	6.7	172

#	Article	IF	CITATIONS
37	ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. Aging, 2020, 12, 4688-4710.	3.1	54
38	Influences of circulatory factors on intervertebral disc aging phenotype. Aging, 2020, 12, 12285-12304.	3.1	5
39	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	3.1	32
40	Rapamycin Rescues Age-Related Changes in Muscle-Derived Stem/Progenitor Cells from Progeroid Mice. Molecular Therapy - Methods and Clinical Development, 2019, 14, 64-76.	4.1	39
41	Creating the Next Generation of Translational Geroscientists. Journal of the American Geriatrics Society, 2019, 67, 1934-1939.	2.6	13
42	SA-& SA-& #946; -Galactosidase-Based Screening Assay for the Identification of Senotherapeutic Drugs. Journal of Visualized Experiments, 2019, , .	0.3	13
43	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
44	Adenoviral gene transfer of a singleâ€chain ILâ€23 induces psoriatic arthritis–like symptoms in NOD mice. FASEB Journal, 2019, 33, 9505-9515.	0.5	7
45	Oxidative stress-induced senescence markedly increases disc cell bioenergetics. Mechanisms of Ageing and Development, 2019, 180, 97-106.	4.6	22
46	Systemic clearance of <i>p16^{INK4a}</i> â€positive senescent cells mitigates ageâ€associated intervertebral disc degeneration. Aging Cell, 2019, 18, e12927.	6.7	118
47	Signal Transduction, Ageing and Disease. Sub-Cellular Biochemistry, 2019, 91, 227-247.	2.4	23
48	Murine models of accelerated aging and musculoskeletal disease. Bone, 2019, 125, 122-127.	2.9	20
49	Mouse Models of Accelerated Cellular Senescence. Methods in Molecular Biology, 2019, 1896, 203-230.	0.9	30
50	Methods to Quantify the NF-κB Pathway During Senescence. Methods in Molecular Biology, 2019, 1896, 231-250.	0.9	13
51	Measuring biological age in mice using differential mass spectrometry. Aging, 2019, 11, 1045-1061.	3.1	7
52	Senotherapeutics for healthy ageing. Nature Reviews Drug Discovery, 2018, 17, 377-377.	46.4	126
53	Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biology, 2018, 17, 259-273.	9.0	103
54	Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1003-1009.	3.6	8

#	Article	IF	CITATIONS
55	Circulating levels of monocyte chemoattractant proteinâ€1 as a potential measure of biological age in mice and frailty in humans. Aging Cell, 2018, 17, e12706.	6.7	77
56	<i>ERCC4</i> variants identified in a cohort of patients with segmental progeroid syndromes. Human Mutation, 2018, 39, 255-265.	2.5	23
57	Development of clinical trials to extend healthy lifespan. Cardiovascular Endocrinology and Metabolism, 2018, 7, 80-83.	1.1	59
58	Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.	6.1	554
59	Cellular Senescence in Intervertebral Disc Aging and Degeneration. Current Molecular Biology Reports, 2018, 4, 180-190.	1.6	55
60	Modeling Alzheimer's disease in progeria mice. An age-related concept. Pathobiology of Aging & Age Related Diseases, 2018, 8, 1524815.	1,1	2
61	Neurodegeneration as the presenting symptom in 2 adults with xeroderma pigmentosum complementation group F. Neurology: Genetics, 2018, 4, e240.	1.9	9
62	Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging. Redox Biology, 2018, 18, 191-199.	9.0	39
63	ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation. Free Radical Biology and Medicine, 2018, 124, 79-96.	2.9	13
64	Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle, 2018, 17, 1048-1055.	2.6	64
65	Nuclear Genomic Instability and Aging. Annual Review of Biochemistry, 2018, 87, 295-322.	11.1	178
66	Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS Biology, 2018, 16, e2004663.	5.6	29
67	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	30.7	1,384
68	Oxidative Stress And Aging. , 2018, , .		0
69	Quantitative Analysis of Cellular Senescence in Culture and In Vivo. Current Protocols in Cytometry, 2017, 79, 9.51.1-9.51.25.	3.7	10
70	Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF- $\hat{1}^{\circ}$ B-dependent mechanism. Aging Cell, 2017, 16, 480-487.	6.7	80
71	Systems biology guided by XCMS Online metabolomics. Nature Methods, 2017, 14, 461-462.	19.0	168
72	A New Preclinical Paradigm for Testing Anti-Aging Therapeutics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 760-762.	3.6	26

#	Article	IF	Citations
73	Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype. Mechanisms of Ageing and Development, 2017, 166, 16-23.	4.6	34
74	Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 2017, 8, 422.	12.8	466
75	mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. Journal of Orthopaedic Research, 2017, 35, 1375-1382.	2.3	27
76	Molecular pathology endpoints useful for aging studies. Ageing Research Reviews, 2017, 35, 241-249.	10.9	50
77	New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging, 2017, 9, 955-963.	3.1	469
78	The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 2017, 65, 2297-2301.	2.6	416
79	ADAMTS5 Deficiency Protects Mice From Chronic Tobacco Smoking-induced Intervertebral Disc Degeneration. Spine, 2017, 42, 1521-1528.	2.0	19
80	Inhibition of NF-κB improves the stress resistance and myogenic differentiation of MDSPCs isolated from naturally aged mice. PLoS ONE, 2017, 12, e0179270.	2.5	7
81	Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms: Table 1 Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1388-1394.	3.6	22
82	Identification of a novel senolytic agent, navitoclax, targeting the Bclâ€2 family of antiâ€apoptotic factors. Aging Cell, 2016, 15, 428-435.	6.7	717
83	Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chemical Research in Toxicology, 2016, 29, 2008-2039.	3.3	131
84	The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14, 644-658.	6.7	1,534
85	Simultaneous Quantification of Methylated Cytidine and Adenosine in Cellular and Tissue RNA by Nano-Flow Liquid Chromatography–Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Analytical Chemistry, 2015, 87, 7653-7659.	6.5	53
86	Comparison of mice with accelerated aging caused by distinct mechanisms. Experimental Gerontology, 2015, 68, 43-50.	2.8	48
87	Investigating the role of DNA damage in tobacco smoking-induced spine degeneration. Spine Journal, 2014, 14, 416-423.	1.3	57
88	Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 2014, 136, 11582-11585.	13.7	282
89	Choline phosphate cytidylyltransferaseâ€Î± is a novel antigen detected by the antiâ€ERCC1 antibody 8F1 with biomarker value in patients with lung and head and neck squamous cell carcinomas. Cancer, 2014, 120, 1898-1907.	4.1	21
90	Pharmacologic IKK/NF-κB inhibition causes antigen presenting cells to undergo TNFα dependent ROS-mediated programmed cell death. Scientific Reports, 2014, 4, 3631.	3.3	27

#	Article	IF	Citations
91	Cell Autonomous and Nonautonomous Mechanisms Drive Hematopoietic Stem/progenitor Cell Loss in the Absence of DNA Repair. Stem Cells, 2013, 31, 511-525.	3.2	23
92	DNA Damage Triggers a Chronic Autoinflammatory Response, Leading to Fat Depletion in NER Progeria. Cell Metabolism, 2013, 18, 403-415.	16.2	102
93	DNA damage drives accelerated bone aging via an NF- ΰ B–dependent mechanism. Journal of Bone and Mineral Research, 2013, 28, 1214-1228.	2.8	98
94	Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs. Mechanisms of Ageing and Development, 2013, 134, 35-42.	4.6	42
95	Isolation of Muscle-Derived Stem/Progenitor Cells Based on Adhesion Characteristics to Collagen-Coated Surfaces. Methods in Molecular Biology, 2013, 976, 53-65.	0.9	69
96	Advances in Understanding the Complex Mechanisms of DNA Interstrand Cross-Link Repair. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012732-a012732.	5. 5	196
97	Mitochondrialâ€derived reactive oxygen species (ROS) play a causal role in agingâ€related intervertebral disc degeneration. Journal of Orthopaedic Research, 2013, 31, 1150-1157.	2.3	148
98	An overview of underlying causes and animal models for the study of ageâ€related degenerative disorders of the spine and synovial joints. Journal of Orthopaedic Research, 2013, 31, 831-837.	2.3	72
99	Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging, 2013, 5, 460-473.	3.1	42
100	A mouse model of accelerated aging due to a defect in DNA repair. FASEB Journal, 2013, 27, 705.9.	0.5	0
101	Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Nucleic Acids Research, 2012, 40, 7368-7374.	14.5	35
102	NF-κB Negatively Impacts the Myogenic Potential of Muscle-derived Stem Cells. Molecular Therapy, 2012, 20, 661-668.	8.2	56
103	ISSLS Prize Winner. Spine, 2012, 37, 1819-1825.	2.0	68
104	Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nature Communications, 2012, 3, 608.	12.8	180
105	A quantitative assay for assessing the effects of DNA lesions on transcription. Nature Chemical Biology, 2012, 8, 817-822.	8.0	71
106	Targeting of XJB-5-131 to Mitochondria Suppresses Oxidative DNA Damage and Motor Decline in a Mouse Model of Huntington's Disease. Cell Reports, 2012, 2, 1137-1142.	6.4	121
107	Comparison of ERCC1/XPF genetic variation, mRNA and protein levels in women with advanced stage ovarian cancer treated with intraperitoneal platinum. Gynecologic Oncology, 2012, 126, 448-454.	1.4	31
108	The oxidative DNA lesions 8,5′â€eyclopurines accumulate with aging in a tissueâ€specific manner. Aging Cell, 2012, 11, 714-716.	6.7	117

#	Article	IF	CITATIONS
109	Multiple DNA Binding Domains Mediate the Function of the ERCC1-XPF Protein in Nucleotide Excision Repair. Journal of Biological Chemistry, 2012, 287, 21846-21855.	3.4	29
110	Downregulation of cholesterol biosynthesis genes in the forebrain of ERCC1-deficient mice. Neurobiology of Disease, 2012, 45, 1136-1144.	4.4	8
111	Pre-treatment tumor expression of ERCC1 in women with advanced stage epithelial ovarian cancer is not predictive of clinical outcomes: A gynecologic oncology group study. Gynecologic Oncology, 2012, 125, 421-426.	1.4	39
112	A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology, 2012, 55, 609-621.	7.3	106
113	NF-κB inhibition delays DNA damage–induced senescence and aging in mice. Journal of Clinical Investigation, 2012, 122, 2601-2612.	8.2	358
114	Visualizing homologous recombination and illustrating DNA repair pathway interaction in vivo via a bioengineered fluorescent reporter system. FASEB Journal, 2012, 26, 454.3.	0.5	0
115	Strategies for the Rejuvenation of Aged Muscle Stem Cells. FASEB Journal, 2012, 26, 914.3.	0.5	0
116	Dedifferentiation rescues senescence of progeria cells but only while pluripotent. Stem Cell Research and Therapy, 2011, 2, 28.	5.5	9
117	Bupivacaine decreases cell viability and matrix protein synthesis in an intervertebral disc organ model system. Spine Journal, 2011, 11, 139-146.	1.3	47
118	ERCC1 and XRCC1 as biomarkers for lung and head and neck cancer. Pharmacogenomics and Personalized Medicine, 2011, 4, 47.	0.7	30
119	Broad segmental progeroid changes in short-lived <i>Ercc1</i> ^{â^'Î"7} mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7219.	1,1	79
120	Premature aging-related peripheral neuropathy in a mouse model of progeria. Mechanisms of Ageing and Development, 2011, 132, 437-442.	4.6	37
121	Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients. Mechanisms of Ageing and Development, 2011, 132, 340-347.	4.6	32
122	Physiological consequences of defects in ERCC1–XPF DNA repair endonuclease. DNA Repair, 2011, 10, 781-791.	2.8	134
123	XPF Expression Correlates with Clinical Outcome in Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2011, 17, 5513-5522.	7.0	50
124	NF-κB in Aging and Disease. , 2011, 2, 449-65.		150
125	Accelerated aging of intervertebral discs in a mouse model of progeria. Journal of Orthopaedic Research, 2010, 28, 1600-1607.	2.3	79
126	The XPA-binding domain of ERCC1 Is Required for Nucleotide Excision Repair but Not Other DNA Repair Pathways. Journal of Biological Chemistry, 2010, 285, 3705-3712.	3.4	97

#	Article	IF	CITATIONS
127	Hyper telomere recombination accelerates replicative senescence and may promote premature aging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15768-15773.	7.1	49
128	Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients. PLoS Genetics, 2010, 6, e1000871.	3.5	57
129	Mouse Muscleâ€Derived Stem Cells in a Murine Model of Accelerated Aging. FASEB Journal, 2010, 24, lb32.	0.5	0
130	XPF-ERCC1 Participates in the Fanconi Anemia Pathway of Cross-Link Repair. Molecular and Cellular Biology, 2009, 29, 6427-6437.	2.3	121
131	Immunodetection of DNA Repair Endonuclease ERCC1-XPF in Human Tissue. Cancer Research, 2009, 69, 6831-6838.	0.9	95
132	Cancer and Aging in DNA repair deficiency: cause and treatment. FASEB Journal, 2009, 23, 429.1.	0.5	0
133	DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair, 2008, 7, 523-529.	2.8	59
134	Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair, 2008, 7, 1180-1189.	2.8	39
135	Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mechanisms of Ageing and Development, 2008, 129, 408-415.	4.6	47
136	Signaling mechanisms involved in the response to genotoxic stress and regulating lifespan. International Journal of Biochemistry and Cell Biology, 2008, 40, 176-180.	2.8	43
137	ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2008, 28, 5082-5092.	2.3	268
138	Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms. PLoS Genetics, 2008, 4, e1000161.	3.5	178
139	ERCC1 and Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2007, 356, 2538-2541.	27.0	83
140	The Fanconi Anemia Signalosome Anchor. Molecular Cell, 2007, 25, 487-490.	9.7	31
141	First Reported Patient with Human ERCC1 Deficiency Has Cerebro-Oculo-Facio-Skeletal Syndrome with a Mild Defect in Nucleotide Excision Repair and Severe Developmental Failure. American Journal of Human Genetics, 2007, 80, 457-466.	6.2	182
142	A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 2006, 444, 1038-1043.	27.8	601
143	Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 596, 22-35.	1.0	100
144	Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome. PLoS Biology, 2006, 5, e2.	5.6	200

#	ARTICLE	lF	CITATIONS
145	Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient $Ercc1\hat{a}^{*}/\hat{a}^{*}$ mice. EMBO Journal, 2005, 24, 861-871.	7.8	130
146	Fanconi Anemia (Cross)linked to DNA Repair. Cell, 2005, 123, 1191-1198.	28.9	275
147	Deletion of the Nucleotide Excision Repair Gene Ercc1 Reduces Immunoglobulin Class Switching and Alters Mutations Near Switch Recombination Junctions. Journal of Experimental Medicine, 2004, 200, 321-330.	8.5	36
148	The Structure-Specific Endonuclease Ercc1-Xpf Is Required To Resolve DNA Interstrand Cross-Link-Induced Double-Strand Breaks. Molecular and Cellular Biology, 2004, 24, 5776-5787.	2.3	445
149	Divide and conquer: nucleotide excision repair battles cancer and ageing. Current Opinion in Cell Biology, 2003, 15, 232-240.	5.4	136
150	Malondialdehyde, a Product of Lipid Peroxidation, Is Mutagenic in Human Cells. Journal of Biological Chemistry, 2003, 278, 31426-31433.	3.4	437
151	ERCC1/XPF Removes the $3\hat{a}\in^2$ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498.	9.7	349
152	Temperature-Dependent Formation of a Conjugate between Tris(hydroxymethyl)aminomethane Buffer and the Malondialdehydeâ^'DNA Adduct Pyrimidopurinone. Chemical Research in Toxicology, 1997, 10, 556-561.	3.3	46