Xiangpeng Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acetylation-dependent regulation of BRAF oncogenic function. Cell Reports, 2022, 38, 110250.	2.9	13
2	Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Research, 2021, 31, 80-93.	5.7	51
3	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	4.6	56
4	Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLoS Genetics, 2019, 15, e1008229.	1.5	17
5	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	4.6	109
6	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	3.1	53
7	SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation. Protein and Cell, 2018, 9, 879-889.	4.8	16
8	Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Molecular Cell, 2018, 69, 279-291.e5.	4.5	138
9	Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 2018, 553, 91-95.	13.7	660
10	Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 11-28.	3.3	48
11	Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nature Communications, 2018, 9, 5426.	5.8	11
12	The emerging roles of protein homeostasisâ€governing pathways in Alzheimer's disease. Aging Cell, 2018, 17, e12801.	3.0	88
13	Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Letters, 2017, 390, 11-20.	3.2	37
14	The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function. Cancer Discovery, 2017, 7, 424-441.	7.7	57
15	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	13.7	136
16	Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.	15.2	240
17	SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle, 2017, 16, 2326-2329.	1.3	15
18	Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Letters, 2017, 385, 207-214.	3.2	43

XIANGPENG DAI

#	Article	IF	CITATIONS
19	Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget, 2017, 8, 47890-47901.	0.8	30
20	Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget, 2016, 7, 26057-26069.	0.8	28
21	A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle, 2016, 15, 3042-3047.	1.3	6
22	Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos. Scientific Reports, 2016, 6, 37396.	1.6	32
23	SCFβ-TRCP promotes cell growth by targeting PR-Set7/Set8 for degradation. Nature Communications, 2015, 6, 10185.	5.8	37
24	The E3 ligase APC/C ^{Cdh1} promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth. Science Signaling, 2015, 8, ra87.	1.6	21
25	SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Molecular Cell, 2015, 59, 917-930.	4.5	172
26	Targeting the ubiquitin pathway for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 50-60.	3.3	99
27	Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 277-293.	3.3	64
28	Acetylationâ€dependent regulation of essential iPS â€inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Medicine, 2014, 3, 1211-1224.	1.3	21
29	APCCdc20 Suppresses Apoptosis through Targeting Bim for Ubiquitination and Destruction. Developmental Cell, 2014, 29, 377-391.	3.1	110
30	Identification of four genes required for mammalian blastocyst formation. Zygote, 2014, 22, 331-339.	0.5	11
31	Negative regulation of DAB2IP by Akt and SCF <i>Fbw7</i> pathways. Oncotarget, 2014, 5, 3307-3315.	0.8	27