
Rafal Kukawka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chemistry, 2018, 20, 4764-4789.	4.6	68
2	Highly Effective Supported Ionic Liquid-Phase (SILP) Catalysts: Characterization and Application to the Hydrosilylation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4699-4706.	3.2	39
3	Cationic derivatives of the plant resistance inducer benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester (BTH) as bifunctional ionic liquids. Tetrahedron Letters, 2014, 55, 3565-3568.	0.7	37
4	Bifunctional quaternary ammonium salts based on benzo[1,2,3]thiadiazole-7-carboxylate as plant systemic acquired resistance inducers. New Journal of Chemistry, 2014, 38, 1372.	1.4	34
5	Dual Functional Salts of Benzo[1.2.3]thiadiazole-7-carboxylates as a Highly Efficient Weapon Against Viral Plant Diseases. ACS Sustainable Chemistry and Engineering, 2017, 5, 4197-4204.	3.2	33
6	New Dual Functional Salts Based on Cationic Derivative of Plant Resistance Inducer—Benzo[1.2.3]thiadiazole-7-carbothioic Acid, S-Methyl Ester. ACS Sustainable Chemistry and Engineering, 2016, 4, 3344-3351.	3.2	29
7	Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction. Molecules, 2016, 21, 1115.	1.7	27
8	New approach to hydrosilylation reaction in ionic liquids as solvent in microreactor system. RSC Advances, 2016, 6, 61860-61868.	1.7	23
9	New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New Journal of Chemistry, 2018, 42, 11984-11990.	1.4	22
10	The effect of the catalyst and the type of ionic liquid on the hydrosilylation process under batch and continuous reaction conditions. New Journal of Chemistry, 2018, 42, 5229-5236.	1.4	16
11	An efficient method for synthesizing monofunctionalized derivatives of 1,1,3,3-tetramethyldisiloxane in ionic liquids as recoverable solvents for rhodium catalyst. Catalysis Communications, 2018, 108, 59-63.	1.6	13
12	New bifunctional ionic liquid-based plant systemic acquired resistance (SAR) inducers with an improved environmental hazard profile. Green Chemistry, 2021, 23, 5138-5149.	4.6	13
13	Use of New BTH Derivative as Supplement or Substitute of Standard Fungicidal Program in Strawberry Cultivation. Agronomy, 2021, 11, 1031.	1.3	8
14	Optimization and intensification of hydrosilylation reactions using a microreactor system. New Journal of Chemistry, 2018, 42, 15332-15339.	1.4	7
15	Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. Pest Management Science, 2022, 78, 446-455.	1.7	7
16	SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts, 2020, 10, 1414.	1.6	4
17	A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests, 2021, 12, 1072.	0.9	4