
Zhenzhong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2909050/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revealing the Fast and Durable Na ⁺ Insertion Reactions in a Layered Na ₃ Fe ₃ (PO ₄) ₄ Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.	2.6	7
2	A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes. Journal of Materials Chemistry A, 2022, 10, 1380-1389.	5.2	15
3	Extreme fast charge aging: Correlation between electrode scale and heterogeneous degradation in Ni-rich layered cathodes. Journal of Power Sources, 2022, 521, 230961.	4.0	15
4	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	5.8	29
5	Upgrading the Performance and Stability of Lithium, Manganeseâ€Rich Layered Oxide Cathodes with Combinedâ€Formic Acid and Spinel Coating Treatment. Batteries and Supercaps, 2022, 5, .	2.4	4
6	Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping. Journal of Materials Chemistry A, 2022, 10, 4006-4014.	5.2	10
7	Enabling Silicon Anodes with Novel Isosorbide-Based Electrolytes. ACS Energy Letters, 2022, 7, 897-905.	8.8	20
8	Understanding the Effect of Cathode Composition on the Interface and Crosstalk in NMC/Si Full Cells. ACS Applied Materials & Interfaces, 2022, 14, 15103-15111.	4.0	15
9	Investigation of Ca Insertion into α-MoO ₃ Nanoparticles for High Capacity Ca-Ion Cathodes. Nano Letters, 2022, 22, 2228-2235.	4.5	16
10	Achieving High Stability and Performance in P2â€⊺ype Mnâ€Based Layered Oxides with Tetravalent Cations for Sodiumâ€Ion Batteries. Small, 2022, 18, e2201086.	5.2	25
11	Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks. Npj Computational Materials, 2022, 8, .	3.5	9
12	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
13	A Comprehensive Understanding of the Aging Effects of Extreme Fast Charging on High Ni NMC Cathode. Advanced Energy Materials, 2022, 12, .	10.2	32
14	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie, 2022, 134, .	1.6	2
15	Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Materials, 2022, 51, 54-62.	9.5	44
16	Extreme Fastâ€Charging of Lithiumâ€lon Cells: Effect on Anode and Electrolyte. Energy Technology, 2021, 9, .	1.8	16
17	Effect of Anode Porosity and Temperature on the Performance and Lithium Plating During Fastâ€Charging of Lithiumâ€ion Cells. Energy Technology, 2021, 9, 2000666.	1.8	14
18	Review—The Lithiation/Delithiation Behavior of Si-Based Electrodes: A Connection between Electrochemistry and Mechanics. Journal of the Electrochemical Society, 2021, 168, 010523.	1.3	21

ZHENZHONG YANG

#	Article	IF	CITATIONS
19	Effect of temperature on capacity fade in silicon-rich anodes. Journal of Power Sources, 2021, 487, 229322.	4.0	8
20	Design and Optimization of the Direct Recycling of Spent Li-Ion Battery Cathode Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 4543-4553.	3.2	81
21	Unveiling the Influence of Carbon Impurity on Recovered NCM622 Cathode Material. ACS Sustainable Chemistry and Engineering, 2021, 9, 6087-6096.	3.2	14
22	Stabilized Lithium, Manganese-Rich Layered Cathode Materials Enabled by Integrating Co-Doping and Nanocoating. ACS Applied Materials & Interfaces, 2021, 13, 22597-22607.	4.0	21
23	Investigating Ternary Li–Mg–Si Zintl Phase Formation and Evolution for Si Anodes in Li-Ion Batteries with Mg(TFSI) ₂ Electrolyte Additive. Chemistry of Materials, 2021, 33, 4960-4970.	3.2	10
24	Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance. ACS Applied Energy Materials, 2021, 4, 8193-8200.	2.5	11
25	Comprehensive Insights into Nucleation, Autocatalytic Growth, and Stripping Efficiency for Lithium Plating in Full Cells. ACS Energy Letters, 2021, 6, 3725-3733.	8.8	13
26	Extended cycle life implications of fast charging for lithium-ion battery cathode. Energy Storage Materials, 2021, 41, 656-666.	9.5	50
27	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	15.6	39
28	From bulk to interface: electrochemical phenomena and mechanism studies in batteries <i>via</i> electrochemical quartz crystal microbalance. Chemical Society Reviews, 2021, 50, 10743-10763.	18.7	48
29	Significance of a Solid Electrolyte Interphase on Separation of Anode and Cathode Materials from Spent Li-Ion Batteries by Froth Flotation. ACS Sustainable Chemistry and Engineering, 2021, 9, 531-540.	3.2	38
30	Positive Role of Fluorine Impurity in Recovered LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 57171-57181.	4.0	20
31	Chemical Interplay of Silicon and Graphite in a Composite Electrode in SEI Formation. ACS Applied Materials & Interfaces, 2021, 13, 56073-56084.	4.0	13
32	An Environmentally Benign Electrolyte for High Energy Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58229-58237.	4.0	5
33	Effect of cathode on crosstalk in Si-based lithium-ion cells. Journal of Materials Chemistry A, 2021, 9, 26904-26916.	5.2	8
34	Design of a Single-Ion Conducting Polymer Electrolyte for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120543.	1.3	8
35	Enabling High-Temperature and High-Voltage Lithium-Ion Battery Performance through a Novel Cathode Surface-Targeted Additive. ACS Applied Materials & Interfaces, 2021, 13, 59538-59545.	4.0	4
36	Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy and Environmental Science, 2020, 13, 884-895.	15.6	99

ZHENZHONG YANG

#	Article	IF	CITATIONS
37	Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis. Energy and Environmental Science, 2020, 13, 3110-3118.	15.6	87
38	Effects of Extended Aqueous Processing on Structure, Chemistry, and Performance of Polycrystalline LiNi <i>_x</i> Mn <i>_y</i> Co <i>_z</i> O ₂ Cathode Powders. ACS Applied Materials & Interfaces, 2020, 12, 57963-57974.	4.0	26
39	Fast Charge-Driven Li Plating on Anode and Structural Degradation of Cathode. Journal of the Electrochemical Society, 2020, 167, 140506.	1.3	28
40	Influence of Fe Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5682-5686.	4.0	54
41	Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues. Journal of the Electrochemical Society, 2019, 166, A1926-A1938.	1.3	92
42	Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol. Journal of Materials Chemistry A, 2016, 4, 6271-6275.	5.2	46
43	The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nature Communications, 2016, 7, 13374.	5.8	180
44	Investigation of Fluoroethylene Carbonate Effects on Tin-based Lithium-Ion Battery Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 6557-6566.	4.0	60
45	In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of α-MnO ₂ electrodes in Li–O ₂ and Li-ion coin cells. Journal of Materials Chemistry A, 2015, 3, 7389-7398.	5.2	43
46	Building a Spontaneously Formed and Self-healing Protective Layer with a F-rich Electrochemically Active Organic Molecule for Ultra-stable Li Metal Batteries. Sustainable Energy and Fuels, 0, , .	2.5	3
47	Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number. ACS Energy Letters, 0, , 1315-1323.	8.8	50