## Artur Jarmolowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2908929/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MicroRNA biogenesis and activity in plant cell dedifferentiation stimulated by cell wall removal. BMC<br>Plant Biology, 2022, 22, 9.                                                                                                                | 3.6  | 3         |
| 2  | R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants.<br>Nature Plants, 2022, 8, 402-418.                                                                                                                | 9.3  | 47        |
| 3  | Quantitative Analysis of Plant Primary Transcripts. Methods in Molecular Biology, 2021, 2170, 53-77.                                                                                                                                                | 0.9  | 4         |
| 4  | Arabidopsis Spliceosome Factor SmD3 Modulates Immunity to Pseudomonas syringae Infection.<br>Frontiers in Plant Science, 2021, 12, 765003.                                                                                                          | 3.6  | 5         |
| 5  | Barley microRNAs as metabolic sensors for soil nitrogen availability. Plant Science, 2020, 299, 110608.                                                                                                                                             | 3.6  | 9         |
| 6  | The identification of differentially expressed genes in male and female gametophytes of simple thalloid<br>liverwort Pellia endiviifolia sp. B using an RNA-seq approach. Planta, 2020, 252, 21.                                                    | 3.2  | 3         |
| 7  | mRNA adenosine methylase (MTA) deposits m <sup>6</sup> A on pri-miRNAs to modulate miRNA<br>biogenesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the<br>United States of America, 2020, 117, 21785-21795. | 7.1  | 83        |
| 8  | Core spliceosomal Sm proteins as constituents of cytoplasmic mRNPs in plants. Plant Journal, 2020, 103, 1155-1173.                                                                                                                                  | 5.7  | 4         |
| 9  | SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis. Nucleic Acids Research, 2020, 48, 6839-6854.                                                                                | 14.5 | 32        |
| 10 | A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes, 2020, 11, 488.                                                                                                                                      | 2.4  | 5         |
| 11 | miRNA Detection by Stem-Loop RT-qPCR in Studying microRNA Biogenesis and microRNA Responsiveness to Abiotic Stresses. Methods in Molecular Biology, 2019, 1932, 131-150.                                                                            | 0.9  | 11        |
| 12 | Novel Nuclear Functions of Arabidopsis ARGONAUTE1: Beyond RNA Interference. Plant Physiology, 2019, 179, 1030-1039.                                                                                                                                 | 4.8  | 24        |
| 13 | A stable tRNA-like molecule is generated from the long noncoding RNA <i>GUT15</i> in<br><i>Arabidopsis</i> . RNA Biology, 2018, 15, 1-13.                                                                                                           | 3.1  | 12        |
| 14 | tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana. Plant and Cell<br>Physiology, 2018, 59, e1-e1.                                                                                                                | 3.1  | 27        |
| 15 | Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with <i>Arabidopsis</i> plants. Plant Biotechnology Journal, 2018, 16, 603-614.                                        | 8.3  | 42        |
| 16 | N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered<br>Review. Genes, 2018, 9, 596.                                                                                                                    | 2.4  | 30        |
| 17 | A Role of U12 Intron in Proper Pre-mRNA Splicing of Plant Cap Binding Protein 20 Genes. Frontiers in Plant Science, 2018, 9, 475.                                                                                                                   | 3.6  | 7         |
| 18 | Regulation of Plant Microprocessor Function in Shaping microRNA Landscape. Frontiers in Plant Science, 2018, 9, 753.                                                                                                                                | 3.6  | 28        |

ARTUR JARMOLOWSKI

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Post-transcriptional Regulation of MicroRNA Accumulation and Function: New Insights fromÂPlants.<br>Molecular Plant, 2018, 11, 1006-1007.                                                | 8.3  | 14        |
| 20 | Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Research, 2017, 45, gkw895.                       | 14.5 | 47        |
| 21 | Alternative Polyadenylation of the Sense Transcript Controls Antisense Transcription of DELAY OF<br>GERMINATION 1 in Arabidopsis. Molecular Plant, 2017, 10, 1349-1352.                  | 8.3  | 24        |
| 22 | Posttranscriptional coordination of splicing and <scp>miRNA</scp> biogenesis in plants. Wiley<br>Interdisciplinary Reviews RNA, 2017, 8, e1403.                                          | 6.4  | 72        |
| 23 | MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis.<br>Frontiers in Plant Science, 2017, 8, 18.                                                | 3.6  | 62        |
| 24 | MicroRNA biogenesis: Epigenetic modifications as another layer of complexity to the microRNA expression regulation. Acta Biochimica Polonica, 2017, 63, 717-723.                         | 0.5  | 25        |
| 25 | Arabidopsis thaliana microRNA162 level is posttranscriptionally regulated via splicing and polyadenylation site selection Acta Biochimica Polonica, 2017, 63, 811-816.                   | 0.5  | 12        |
| 26 | Barley primary microRNA expression pattern is affected by soil water availability. Acta Biochimica<br>Polonica, 2017, 63, 817-824.                                                       | 0.5  | 3         |
| 27 | Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. Frontiers in Plant Science, 2016, 7, 926.                                     | 3.6  | 42        |
| 28 | Salt Stress Reveals a New Role for ARGONAUTE1 in miRNA Biogenesis at the Transcriptional and Posttranscriptional Levels. Plant Physiology, 2016, 172, 297-312.                           | 4.8  | 72        |
| 29 | Virus-Induced Gene Silencing for Gene Function Studies in Barley. Methods in Molecular Biology, 2016, 1398, 293-308.                                                                     | 0.9  | 8         |
| 30 | Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics, 2015, 16, 1009.                     | 2.8  | 20        |
| 31 | Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in<br>Plant Science, 2015, 6, 410.                                                     | 3.6  | 192       |
| 32 | <scp>NTR</scp> 1 is required for transcription elongation checkpoints at alternative exons in <i>Arabidopsis</i> . EMBO Journal, 2015, 34, 544-558.                                      | 7.8  | 52        |
| 33 | FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Research, 2015, 43, gkv794. | 14.5 | 32        |
| 34 | The liverwort <i><scp>P</scp>ellia endiviifolia</i> shares microtranscriptomic traits that are common to green algae and land plants. New Phytologist, 2015, 206, 352-367.               | 7.3  | 84        |
| 35 | mirEX 2.0 - an integrated environment for expression profiling of plant microRNAs. BMC Plant Biology, 2015, 15, 144.                                                                     | 3.6  | 68        |
| 36 | Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley.<br>Journal of Experimental Botany, 2014, 65, 6123-6135.                              | 4.8  | 153       |

ARTUR JARMOLOWSKI

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Research, 2014, 42, 1224-1244.                                             | 14.5 | 94        |
| 38 | Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution,<br>Obtained Using Small-Angle X-Ray Scattering. PLoS ONE, 2014, 9, e93313. | 2.5  | 9         |
| 39 | miR393 Is Required for Production of Proper Auxin Signalling Outputs. PLoS ONE, 2014, 9, e95972.                                                                          | 2.5  | 43        |
| 40 | Downâ€regulation of <i><scp>CBP</scp>80</i> gene expression as a strategy to engineer a droughtâ€tolerant potato. Plant Biotechnology Journal, 2013, 11, 459-469.         | 8.3  | 114       |
| 41 | The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signaling and Behavior, 2013, 8, e26955.                                               | 2.4  | 29        |
| 42 | mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Research, 2012, 40, D191-D197.                                            | 14.5 | 50        |
| 43 | Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene, 2011, 485, 53-62.       | 2.2  | 13        |
| 44 | Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids<br>Research, 2009, 37, 3083-3093.                                         | 14.5 | 130       |
| 45 | New polymorphic microsatellite loci developed and characterized from edible dormouse (Glis glis).<br>Conservation Genetics, 2009, 10, 2029-2031.                          | 1.5  | 8         |
| 46 | The Arabidopsis CBP20 targets the capâ€binding complex to the nucleus, and is stabilized by CBP80. Plant<br>Journal, 2009, 59, 814-825.                                   | 5.7  | 51        |
| 47 | siRNAs and miRNAs: small RNA molecules for big tasks. Acta Physiologiae Plantarum, 2004, 26, 363-369.                                                                     | 2.1  | 4         |
| 48 | Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex.<br>Gene, 2002, 283, 171-183.                                            | 2.2  | 48        |