
Andrea Kassner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2908151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 2010, 31, 809-816.	2.4	335
2	Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Research, 2003, 63, 5838-43.	0.9	323
3	Stepping-Table Gadolinium- enhanced Digital Subtraction MR Angiography of the Aorta and Lower Extremity Arteries: Preliminary Experience. Radiology, 1999, 211, 59-67.	7.3	321
4	Contrast-enhanced 3D MRA using SENSE. Journal of Magnetic Resonance Imaging, 2000, 12, 671-677.	3.4	221
5	Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. American Journal of Neuroradiology, 2002, 23, 7-14.	2.4	213
6	Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS ONE, 2017, 12, e0171558.	2.5	127
7	Assessment of Blood–Brain Barrier Disruption in Stroke. Stroke, 2015, 46, 3310-3315.	2.0	115
8	Selective Reduction of Blood Flow to White Matter During Hypercapnia Corresponds With Leukoaraiosis. Stroke, 2008, 39, 1993-1998.	2.0	106
9	Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level—dependent magnetic resonance imaging. Journal of Neurosurgery, 2005, 103, 347-355.	1.6	95
10	Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. American Journal of Neuroradiology, 2005, 26, 2183-6.	2.4	91
11	Bloodâ€oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: Reproducibility and gender differences. Journal of Magnetic Resonance Imaging, 2010, 31, 298-304.	3.4	89
12	Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. American Journal of Neuroradiology, 2005, 26, 2213-7.	2.4	81
13	Evaluation of Subcortical White Matter and Deep White Matter Tracts in Malformations of Cortical Development. Epilepsia, 2007, 48, 1460-1469.	5.1	80
14	Recombinant Tissue Plasminogen Activator Increases Blood-Brain Barrier Disruption in Acute Ischemic Stroke: An MR Imaging Permeability Study. American Journal of Neuroradiology, 2009, 30, 1864-1869.	2.4	67
15	Sex differences in the human corpus callosum microstructure: A combined T2 myelin-water and diffusion tensor magnetic resonance imaging study. Brain Research, 2010, 1343, 37-45.	2.2	67
16	The severity of anaemia depletes cerebrovascular dilatory reserve in children with sickle cell disease: a quantitative magnetic resonance imaging study. British Journal of Haematology, 2017, 176, 280-287.	2.5	60
17	Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease. American Journal of Neuroradiology, 2018, 39, 1717-1723.	2.4	55
18	Evaluation of Diffusion Tensor Imaging and Fiber Tractography of the Median Nerve: Preliminary Results on Intrasubject Variability and Precision of Measurements. American Journal of Roentgenology, 2010, 194, W65-W72.	2.2	54

ANDREA KASSNER

#	Article	IF	CITATIONS
19	Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1â€weighted MR images. Journal of Magnetic Resonance Imaging, 2009, 30, 933-941.	3.4	51
20	Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value. Skeletal Radiology, 2009, 38, 51-59.	2.0	47
21	Measurement of Cerebrovascular Reactivity in Pediatric Patients With Cerebral Vasculopathy Using Blood Oxygen Level-Dependent MRI. Stroke, 2011, 42, 1261-1269.	2.0	43
22	Longitudinal Assessment of Imatinib's Effect on the Blood–Brain Barrier After Ischemia/Reperfusion Injury with Permeability MRI. Translational Stroke Research, 2015, 6, 39-49.	4.2	41
23	Developmental trajectories of cerebrovascular reactivity in healthy children and young adults assessed with magnetic resonance imaging. Journal of Physiology, 2016, 594, 2681-2689.	2.9	40
24	Relative Recirculation. Investigative Radiology, 2009, 44, 662-668.	6.2	34
25	Noninvasive MRI Measures of Microstructural and Cerebrovascular Changes During Normal Swine Brain Development. Pediatric Research, 2011, 69, 418-424.	2.3	27
26	Measuring Permeability in Acute Ischemic Stroke. Neuroimaging Clinics of North America, 2011, 21, 315-325.	1.0	26
27	Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan?. Magnetic Resonance Imaging, 2009, 27, 1216-1222.	1.8	25
28	MRI-based cerebrovascular reactivity using transfer function analysis reveals temporal group differences between patients with sickle cell disease and healthy controls. NeuroImage: Clinical, 2016, 12, 624-630.	2.7	25
29	Reduced cerebrovascular reserve is regionally associated with cortical thickness reductions in children with sickle cell disease. Brain Research, 2016, 1642, 263-269.	2.2	24
30	Measuring the Integrity of the Human Blood–Brain Barrier Using Magnetic Resonance Imaging. Methods in Molecular Biology, 2011, 686, 229-245.	0.9	24
31	Diffusion Tensor Magnetic Resonance Imaging of the Human Calf. Investigative Radiology, 2008, 43, 612-618.	6.2	23
32	Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 994-1005.	4.3	23
33	Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI. Journal of Magnetic Resonance Imaging, 2016, 43, 1191-1195.	3.4	20
34	Beyond Perfusion. Topics in Magnetic Resonance Imaging, 2004, 15, 58-65.	1.2	19
35	Distinct Clinical and Radiographic Phenotypes in Pediatric Patients With Moyamoya. Pediatric Neurology, 2021, 120, 18-26.	2.1	18
36	Cerebral Blood Flow Abnormalities in Children With Sickle Cell Disease: A Systematic Review. Pediatric Neurology, 2013, 48, 188-199.	2.1	17

ANDREA KASSNER

#	Article	IF	CITATIONS
37	Assessment of intracranial blood flow velocities using a computer controlled vasoactive stimulus: A comparison between phase contrast magnetic resonance angiography and transcranial doppler ultrasonography. Journal of Magnetic Resonance Imaging, 2013, 38, 733-738.	3.4	16
38	Neoangiogenesis in association with moyamoya syndrome shown by estimation of relative recirculation based on dynamic contrast-enhanced MR images. American Journal of Neuroradiology, 2003, 24, 810-8.	2.4	15
39	Neuroproteome Changes after Ischemia/Reperfusion Injury and Tissue Plasminogen Activator Administration in Rats: A Quantitative iTRAQ Proteomics Study. PLoS ONE, 2014, 9, e98706.	2.5	13
40	Assessment of cerebral blood flow with magnetic resonance imaging in children with sickle cell disease: A quantitative comparison with transcranial Doppler ultrasonography. Brain and Behavior, 2017, 7, e00811.	2.2	12
41	Positional obstructive sleep apnea in an obese pediatric population. Journal of Clinical Sleep Medicine, 2020, 16, 1295-1301.	2.6	12
42	Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood–brain barrier permeability in a rodent stroke model. Magnetic Resonance Imaging, 2015, 33, 1007-1012.	1.8	11
43	Hydroxycarbamide treatment in children with Sickle Cell Anaemia is associated with more intact white matter integrity: a quantitative MRI study. British Journal of Haematology, 2019, 187, 238-245.	2.5	11
44	Quantification of pathophysiological alterations in venous oxygen saturation: A comparison of global MR susceptometry techniques. Magnetic Resonance Imaging, 2019, 58, 18-23.	1.8	11
45	Cerebrovascular Reactivity and Intellectual Outcome in Childhood Stroke With Transient Cerebral Arteriopathy. Pediatric Neurology, 2017, 69, 71-78.	2.1	10
46	Assessment of tumor angiogenesis: dynamic contrastâ€enhanced MRI with paramagnetic nanoparticles compared with Gdâ€DTPA in a rabbit Vxâ€2 tumor model. Contrast Media and Molecular Imaging, 2010, 5, 155-161.	0.8	9
47	Measurements of left ventricular dimensions using real-time acquisition in cardiac magnetic resonance imaging: comparison with conventional gradient echo imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2001, 13, 101-108.	2.0	8
48	Feasibility and precision of cerebral blood flow and cerebrovascular reactivity MRI measurements using a computerâ€controlled gas delivery system in an anesthetised juvenile animal model. Journal of Magnetic Resonance Imaging, 2010, 32, 1068-1075.	3.4	8
49	The Potential for Advanced Magnetic Resonance Neuroimaging Techniques in Pediatric Stroke Research. Pediatric Neurology, 2017, 69, 24-36.	2.1	8
50	Ultrasound Detection of Abnormal Cerebrovascular Morphology in a Mouse Model of Sickle Cell Disease Based on Wave Reflection. Ultrasound in Medicine and Biology, 2019, 45, 3269-3278.	1.5	6
51	Wallerian Degeneration of the Cerebral Peduncle and Association with Motor Outcome in Childhood Stroke. Pediatric Neurology, 2020, 102, 67-73.	2.1	6
52	Hyperpolarized ¹²⁹ Xe MRI of the rat brain with chemical shift saturation recovery and spiralâ€IDEAL readout. Magnetic Resonance in Medicine, 2022, 87, 1971-1979.	3.0	6
53	Normal appearing white matter permeability: a marker of inflammation and information processing speed deficit among relapsing remitting multiple sclerosis patients. Neuroradiology, 2017, 59, 771-780.	2.2	5
54	Chemical shift of 129 Xe dissolved in red blood cells: Application to a rat model of bronchopulmonary dysplasia. Magnetic Resonance in Medicine, 2020, 84, 52-60.	3.0	5

ANDREA KASSNER

#	Article	IF	CITATIONS
55	Comparison of spiral imaging and SENSEâ€EPI at 1.5 and 3.0 T using a controlled cerebrovascular challenge. Journal of Magnetic Resonance Imaging, 2009, 29, 1206-1210.	3.4	4
56	Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla. European Radiology, 2014, 24, 2766-2778.	4.5	4
57	Fronto-Parietal and White Matter Haemodynamics Predict Cognitive Outcome in Children with Moyamoya Independent of Stroke. Translational Stroke Research, 2022, 13, 757-773.	4.2	3
58	A Novel <i>m</i> CAD for pediatric metabolic brain diseases incorporating DW imaging and MR spectroscopy. Expert Systems, 2013, 30, 21-33.	4.5	2
59	Effect of inhaled oxygen concentration on 129 Xe chemical shift of red blood cells in rat lungs. Magnetic Resonance in Medicine, 2021, 86, 1187-1193.	3.0	2
60	Quantitative MRI of Hemodynamic Compromise in Children with Sickle Cell Disease: New Insights into Pathophysiology. Blood, 2015, 126, 2168-2168.	1.4	1
61	Evaluation of Blood–Brain Barrier Permeability and Integrity in Juvenile Rodents: Dynamic Contrast-Enhanced (DCE), Magnetic Resonance Imaging (MRI), and Evans Blue Extravasation. Neuromethods, 2019, , 299-314.	0.3	1
62	Assessing the Effect of Short and Long-Term Hydroxyurea Treatment on Cerebral Hemodynamics in Children with Sickle Cell Anemia Using Quantitative MRI: Preliminary Findings. Blood, 2014, 124, 4090-4090.	1.4	0
63	Transfusion Therapy and Hydroxyurea Improves Cerebrovascular Reserve and Perfusion in Children with Sickle Cell Anemia: An MRI Study. Blood, 2015, 126, 3397-3397.	1.4	0
64	Positional obstructive sleep apnea in an obese pediatric population. Journal of Clinical Sleep Medicine, 2020, , .	2.6	0