Jon S Harding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2907504/publications.pdf

Version: 2024-02-01

430874 330143 1,441 45 18 37 citations g-index h-index papers 45 45 45 1659 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: A critical review and suggestions for improving their applicability. , 2022, 1 , 100054 .		22
2	Analysis of the conservation status of New Zealand freshwater invertebrates: temporal changes, knowledge gaps, impediments, and management implications. New Zealand Journal of Zoology, 2021, 48, 81-96.	1.1	4
3	Benthic Invertebrate Indices Show No Response to High Nitrate-Nitrogen in Lowland Agricultural Streams. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	1
4	The Biological Assessment and Rehabilitation of the World's Rivers: An Overview. Water (Switzerland), 2021, 13, 371.	2.7	88
5	Ecological processes mediate the effects of the invasive bloom-forming diatom Didymosphenia geminata on stream algal and invertebrate assemblages. Hydrobiologia, 2020, 847, 177-190.	2.0	6
6	Mechanisms of trophic niche compression: Evidence from landscape disturbance. Journal of Animal Ecology, 2020, 89, 730-744.	2.8	34
7	Changes in stream foodâ€web structure across a gradient of acid mine drainage increase local community stability. Ecology, 2020, 101, e03102.	3.2	8
8	Trialling tools using hand-weeding, weed mat and artificial shading to control nuisance macrophyte growth at multiple scales in small agricultural waterways. New Zealand Journal of Marine and Freshwater Research, 2020, 54, 512-526.	2.0	5
9	Partnerships Generate Co-Benefits in Agricultural Stream Restoration (Canterbury, New Zealand). Case Studies in the Environment, 2020, 4, .	0.7	5
10	Evaluating practical macrophyte control tools on small agricultural waterways in Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 182-200.	2.0	6
11	Capacity for bioreactors and riparian rehabilitation to enhance nitrate attenuation in agricultural streams. Ecological Engineering, 2019, 134, 65-77.	3.6	13
12	Faecal indicator bacteria in New Zealand freshwater fish: a pilot study. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 470-479.	2.0	2
13	Distribution, nymphal habitat, genetic structure and conservation of the New Zealand mayfly Isothraulus abditus (Insecta: Ephemeroptera) and a description of its subimago. New Zealand Journal of Zoology, 2019, 46, 13-30.	1.1	4
14	Shifts in population size structure for a dryingâ€ŧolerant fish in response to extreme drought. Austral Ecology, 2019, 44, 658-667.	1.5	6
15	Anthropogenic mining alters macroinvertebrate size spectra in streams. Freshwater Biology, 2019, 64, 81-92.	2.4	21
16	Inferring predator–prey interactions in food webs. Methods in Ecology and Evolution, 2019, 10, 356-367.	5.2	35
17	Comparison of fluorescent lights with differing spectral properties on catches of adult aquatic and terrestrial insects. New Zealand Entomologist, 2018, 41, 1-11.	0.3	10

Distribution, body size, genetic structure and conservation of Siphlaenigma janae (Insecta:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	IF	CITATIONS
19	Acute toxicity of arsenic to larvae of four New Zealand freshwater insect taxa. New Zealand Journal of Marine and Freshwater Research, 2017, 51, 443-454.	2.0	2
20	Leaf litter additions enhance stream metabolism, denitrification, and restoration prospects for agricultural catchments. Ecosphere, 2017, 8, e02018.	2.2	25
21	Metaâ€community theory and stream restoration: evidence that spatial position constrains stream invertebrate communities in a mine impacted landscape. Restoration Ecology, 2015, 23, 284-291.	2.9	25
22	Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environmental Monitoring and Assessment, 2015, 187, 4132.	2.7	209
23	Riparian shading mitigates stream eutrophication in agricultural catchments. Freshwater Science, 2014, 33, 73-84.	1.8	71
24	Leaf breakdown, detrital resources, and food webs in streams affected by mine drainage. Hydrobiologia, 2013, 716, 59-73.	2.0	12
25	Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications, 2013, 23, 1036-1047.	3.8	172
26	Do food quantity and quality affect food webs in streams polluted by acid mine drainage?. Marine and Freshwater Research, 2013, 64, 1112.	1.3	8
27	Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 2012, 31, 108-120.	1.8	158
28	Improving the effectiveness of riparian management for aquatic invertebrates in a degraded agricultural landscape: stream size and landâ€use legacies. Journal of Applied Ecology, 2012, 49, 213-222.	4.0	50
29	Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution, 2012, 162, 466-474.	7.5	54
30	Distinctive aquatic assemblages in waterâ€filled tree holes: a novel component of freshwater biodiversity in New Zealand temperate rainforests. Insect Conservation and Diversity, 2012, 5, 202-212.	3.0	8
31	Heavy metals: confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity. Science of the Total Environment, 2010, 408, 3240-3250.	8.0	37
32	Response of a new zealand mayfly ($\langle i \rangle$ Deleatidium $\langle i \rangle$ spp.) to acid mine drainage: Implications for mine remediation. Environmental Toxicology and Chemistry, 2008, 27, 1135-1140.	4.3	31
33	Persistence of a significant population of rare Canterbury mudfish (<i>Neochanna burrowsius</i>) in a hydrologically isolated catchment. New Zealand Journal of Marine and Freshwater Research, 2007, 41, 309-316.	2.0	12
34	Longitudinal patterns in benthic communities in an urban stream under restoration. New Zealand Journal of Marine and Freshwater Research, 2005, 39, 17-28.	2.0	27
35	Historic deforestation and the fate of endemic invertebrate species in streams. New Zealand Journal of Marine and Freshwater Research, 2003, 37, 333-345.	2.0	42
36	Feeding ecology ofAoteapsyche raruraru(McFarlane) (Trichoptera: Hydropsychidae) in a New Zealand Lake Outlet. Aquatic Insects, 1997, 19, 51-63.	0.9	8

#	Article	lF	CITATIONS
37	Strategies for coexistence in two species of New Zealand Hydropsychidae (Trichoptera). Hydrobiologia, 1997, 350, 25-33.	2.0	15
38	An Ecoregion Classification of the South Island, New Zealand. Journal of Environmental Management, 1997, 51, 275-287.	7.8	29
39	Stream faunas and ecoregions in South Island, New Zealand: do they correspond?. Fundamental and Applied Limnology, 1997, 140, 289-307.	0.7	53
40	Effects of contrasting land use on physicoâ€chemical conditions and benthic assemblages of streams in a Canterbury (South Island, New Zealand) river system. New Zealand Journal of Marine and Freshwater Research, 1995, 29, 479-492.	2.0	81
41	Variations in benthic fauna between differing lake outlet types in New Zealand. New Zealand Journal of Marine and Freshwater Research, 1994, 28, 417-427.	2.0	13
42	Life history and production ofColoburiscus humeralis(Ephemeroptera: Oligoneuriidae) in two South Island highâ€country streams, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1993, 27, 445-451.	2.0	7
43	Physicoâ€chemical parameters and invertebrate faunas of three lake inflows and outlets in Westland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1992, 26, 95-102.	2.0	11
44	Discontinuities in the distribution of invertebrates in impounded south island rivers, New Zealand. River Research and Applications, 1992, 7, 327-335.	0.8	7
45	Riparian plant species offer a range of organic resources to stream invertebrate communities through varied leaf breakdown rates. New Zealand Journal of Marine and Freshwater Research, 0, , 1-16.	2.0	0