
## Jason D Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2907274/publications.pdf Version: 2024-02-01



IASON D WERED

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | lt's Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy.<br>Frontiers in Cell and Developmental Biology, 2022, 10, 818744. | 3.7  | 15        |
| 2  | Evaluating the therapeutic potential of ADAR1 inhibition for triple-negative breast cancer. Oncogene, 2021, 40, 189-202.                                              | 5.9  | 44        |
| 3  | Evaluation of Racial/Ethnic Differences in Treatment and Mortality Among Women With<br>Triple-Negative Breast Cancer. JAMA Oncology, 2021, 7, 1016.                   | 7.1  | 68        |
| 4  | 8-Azaadenosine and 8-Chloroadenosine are not Selective Inhibitors of ADAR. Cancer Research<br>Communications, 2021, 1, 56-64.                                         | 1.7  | 11        |
| 5  | Upregulation of 5′-terminal oligopyrimidine mRNA translation upon loss of the ARF tumor suppressor.<br>Scientific Reports, 2020, 10, 22276.                           | 3.3  | 5         |
| 6  | Race and risk of subsequent aggressive breast cancer following ductal carcinoma in situ. Cancer, 2019, 125, 3225-3233.                                                | 4.1  | 18        |
| 7  | DHX33 Interacts with AP-2 <i>β</i> To Regulate <i>Bcl-2</i> Gene Expression and Promote Cancer Cell<br>Survival. Molecular and Cellular Biology, 2019, 39, .          | 2.3  | 18        |
| 8  | Associations of race and ethnicity with risk of developing invasive breast cancer after lobular carcinoma in situ. Breast Cancer Research, 2019, 21, 120.             | 5.0  | 18        |
| 9  | Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. ELife, 2019, 8, .                                                        | 6.0  | 198       |
| 10 | The Role of RNA Editing in Cancer Development and Metabolic Disorders. Frontiers in Endocrinology, 2018, 9, 762.                                                      | 3.5  | 70        |
| 11 | Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nature<br>Communications, 2018, 9, 3787.                                           | 12.8 | 112       |
| 12 | Sabotaging of the oxidative stress response by an oncogenic noncoding RNA. FASEB Journal, 2017, 31, 482-490.                                                          | 0.5  | 9         |
| 13 | DHX33 Transcriptionally Controls Genes Involved in the Cell Cycle. Molecular and Cellular Biology, 2016, 36, 2903-2917.                                               | 2.3  | 24        |
| 14 | The DHX33 RNA Helicase Promotes mRNA Translation Initiation. Molecular and Cellular Biology, 2015, 35, 2918-2931.                                                     | 2.3  | 56        |
| 15 | Targeting PTEN-defined breast cancers with a one-two punch. Breast Cancer Research, 2015, 17, 51.                                                                     | 5.0  | 4         |
| 16 | Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer<br>Research, 2014, 16, 449.                                        | 5.0  | 57        |
| 17 | <i>TP53</i> Mutations and Lung Cancer: Not All Mutations Are Created Equal. Clinical Cancer<br>Research, 2014, 20, 4419-4421.                                         | 7.0  | 25        |
| 18 | ARF and p53 Coordinate Tumor Suppression of an Oncogenic IFN-β-STAT1-ISG15 Signaling Axis. Cell<br>Reports, 2014, 7, 514-526.                                         | 6.4  | 47        |

JASON D WEBER

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | ARF tumor suppression in the nucleolus. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 831-839.                                                        | 3.8  | 59        |
| 20 | Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.                                                                      | 28.9 | 1,715     |
| 21 | p19 <sup>ARF</sup> and Ras <sup>V12</sup> Offer Opposing Regulation of DHX33 Translation To Dictate<br>Tumor Cell Fate. Molecular and Cellular Biology, 2013, 33, 1594-1607.    | 2.3  | 25        |
| 22 | Forget Transcription: Translation Is Where the Action Is. Molecular and Cellular Biology, 2013, 33, 1884-1885.                                                                  | 2.3  | 5         |
| 23 | Synergistic Effects of Concurrent Blockade of PI3K and MEK Pathways in Pancreatic Cancer<br>Preclinical Models. PLoS ONE, 2013, 8, e77243.                                      | 2.5  | 36        |
| 24 | Hypergrowth mTORC1 Signals Translationally Activate the ARF Tumor Suppressor Checkpoint.<br>Molecular and Cellular Biology, 2012, 32, 348-364.                                  | 2.3  | 20        |
| 25 | Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 2012, 486, 353-360.                                                                       | 27.8 | 922       |
| 26 | Deconvoluting mTOR biology. Cell Cycle, 2012, 11, 236-248.                                                                                                                      | 2.6  | 80        |
| 27 | Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest.<br>Journal of Neuro-Oncology, 2012, 108, 59-67.                              | 2.9  | 47        |
| 28 | Cathepsin K-Cre Causes Unexpected Germline Deletion of Genes in Mice. PLoS ONE, 2012, 7, e42005.                                                                                | 2.5  | 27        |
| 29 | RNA Helicase DDX5 Is a p53-Independent Target of ARF That Participates in Ribosome Biogenesis. Cancer<br>Research, 2011, 71, 6708-6717.                                         | 0.9  | 59        |
| 30 | Identification of DHX33 as a Mediator of rRNA Synthesis and Cell Growth. Molecular and Cellular Biology, 2011, 31, 4676-4691.                                                   | 2.3  | 61        |
| 31 | Loss of <i>Trop2</i> Promotes Carcinogenesis and Features of Epithelial to Mesenchymal Transition in<br>Squamous Cell Carcinoma. Molecular Cancer Research, 2011, 9, 1686-1695. | 3.4  | 55        |
| 32 | Nucleolar Disruption Ensures Nuclear Accumulation of p21 upon DNA Damage. Traffic, 2010, 11, 743-755.                                                                           | 2.7  | 29        |
| 33 | Tuberous Sclerosis Complex 1: An Epithelial Tumor Suppressor Essential to Prevent Spontaneous<br>Prostate Cancer in Aged Mice. Cancer Research, 2010, 70, 8937-8947.            | 0.9  | 17        |
| 34 | Synthetic Lethality through Combined Notch–Epidermal Growth Factor Receptor Pathway Inhibition<br>in Basal-Like Breast Cancer. Cancer Research, 2010, 70, 5465-5474.            | 0.9  | 64        |
| 35 | The ARF Tumor Suppressor Regulates Bone Remodeling and Osteosarcoma Development in Mice. PLoS ONE, 2010, 5, e15755.                                                             | 2.5  | 20        |
| 36 | Nucleophosmin Redistribution following Heat Shock: A Role in Heat-Induced Radiosensitization.<br>Cancer Research, 2009, 69, 6454-6462.                                          | 0.9  | 14        |

JASON D WEBER

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <i>PIK3CA</i> and <i>PIK3CB</i> Inhibition Produce Synthetic Lethality when Combined with Estrogen<br>Deprivation in Estrogen Receptor–Positive Breast Cancer. Cancer Research, 2009, 69, 3955-3962.         | 0.9 | 198       |
| 38 | A Non-Tumor Suppressor Role for Basal p19 <sup>ARF</sup> in Maintaining Nucleolar Structure and Function. Molecular and Cellular Biology, 2008, 28, 1068-1080.                                               | 2.3 | 40        |
| 39 | Nucleophosmin Serves as a Rate-Limiting Nuclear Export Chaperone for the Mammalian Ribosome.<br>Molecular and Cellular Biology, 2008, 28, 7050-7065.                                                         | 2.3 | 180       |
| 40 | Nucleophosmin Mediates Mammalian Target of Rapamycin–Dependent Actin Cytoskeleton Dynamics and<br>Proliferation in Neurofibromin-Deficient Astrocytes. Cancer Research, 2007, 67, 4790-4799.                 | 0.9 | 61        |
| 41 | Therapeutic Targets in the ARF Tumor Suppressor Pathway. Current Medicinal Chemistry, 2007, 14, 1815-1827.                                                                                                   | 2.4 | 40        |
| 42 | TSC1 Sets the Rate of Ribosome Export and Protein Synthesis through Nucleophosmin Translation.<br>Cancer Research, 2007, 67, 1609-1617.                                                                      | 0.9 | 36        |
| 43 | c-Fms Tyrosine 559 Is a Major Mediator of M-CSF-induced Proliferation of Primary Macrophages.<br>Journal of Biological Chemistry, 2007, 282, 18980-18990.                                                    | 3.4 | 61        |
| 44 | Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochemical Journal, 2007, 407, 451-460.                                                                                             | 3.7 | 134       |
| 45 | A Faster Migrating Variant Masquerades as NICD When Performing in Vitro γ-Secretase Assays with<br>Bacterially Expressed Notch Substratesâ€. Biochemistry, 2006, 45, 5351-5358.                              | 2.5 | 2         |
| 46 | Phosphorylation-Dependent Ubiquitination of Cyclin D1 by the SCFFBX4-αB Crystallin Complex.<br>Molecular Cell, 2006, 24, 355-366.                                                                            | 9.7 | 321       |
| 47 | Nucleophosmin Is Essential for Ribosomal Protein L5 Nuclear Export. Molecular and Cellular Biology, 2006, 26, 3798-3809.                                                                                     | 2.3 | 191       |
| 48 | Nucleolar Adaptation in Human Cancer. Cancer Investigation, 2005, 23, 599-608.                                                                                                                               | 1.3 | 73        |
| 49 | Cerebrospinal Fluid Proteomic Analysis Reveals Dysregulation of Methionine Aminopeptidase-2<br>Expression in Human and Mouse Neurofibromatosis 1–Associated Glioma. Cancer Research, 2005, 65,<br>9843-9850. | 0.9 | 58        |
| 50 | Proteomic Analysis Reveals Hyperactivation of the Mammalian Target of Rapamycin Pathway in<br>Neurofibromatosis 1–Associated Human and Mouse Brain Tumors. Cancer Research, 2005, 65, 2755-2760.             | 0.9 | 283       |
| 51 | ARF Impedes NPM/B23 Shuttling in an Mdm2-Sensitive Tumor Suppressor Pathway. Molecular and Cellular Biology, 2004, 24, 9327-9338.                                                                            | 2.3 | 148       |
| 52 | Defining the molecular basis of Arf and Hdm2 interactions. Journal of Molecular Biology, 2001, 314, 263-277.                                                                                                 | 4.2 | 116       |
| 53 | Solution Structure of the p53 Regulatory Domain of the p19Arf Tumor Suppressor Protein.<br>Biochemistry, 2001, 40, 2379-2386.                                                                                | 2.5 | 44        |
| 54 | p53-independent functions of the p19ARF tumor suppressor. Genes and Development, 2000, 14, 2358-2365.                                                                                                        | 5.9 | 317       |

JASON D WEBER

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex.<br>Molecular and Cellular Biology, 2000, 20, 2517-2528.                                                                                                                 | 2.3  | 260       |
| 56 | The ARF/p53 pathway. Current Opinion in Genetics and Development, 2000, 10, 94-99.                                                                                                                                                                                    | 3.3  | 612       |
| 57 | Oncogenic Ras Induces p19ARF and Growth Arrest in Mouse Embryo Fibroblasts Lacking p21Cip1 and p27Kip1 without Activating Cyclin D-dependent Kinases. Journal of Biological Chemistry, 2000, 275, 27473-27480.                                                        | 3.4  | 60        |
| 58 | Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biology, 1999, 1, 20-26.                                                                                                                                                                                 | 10.3 | 854       |
| 59 | Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes and Development, 1999, 13, 2658-2669.                                                                                                                                   | 5.9  | 734       |
| 60 | Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proceedings of the United States of America, 1998, 95, 8292-8297.                                                                                                                 | 7.1  | 820       |
| 61 | Ablation of Goα Overrides G1Restriction Point Control through Ras/ERK/Cyclin D1-CDK Activities.<br>Journal of Biological Chemistry, 1997, 272, 17320-17326.                                                                                                           | 3.4  | 19        |
| 62 | Ablation of Go α-Subunit Results in a Transformed Phenotype and Constitutively Active<br>Phosphatidylcholine-specific Phospholipase C. Journal of Biological Chemistry, 1997, 272, 17312-17319.                                                                       | 3.4  | 32        |
| 63 | Ras-stimulated Extracellular Signal-related Kinase 1 and RhoA Activities Coordinate Platelet-derived<br>Growth Factor-induced G1 Progression through the Independent Regulation of Cyclin D1 and p27KIP1.<br>Journal of Biological Chemistry, 1997, 272, 32966-32971. | 3.4  | 174       |
| 64 | Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochemical Journal, 1997, 326, 61-68.                                                                                      | 3.7  | 384       |
| 65 | Fibronectin and cytokines increase JNK, ERK, AP-1 activity, and transin gene expression in rat hepatic stellate cells. American Journal of Physiology - Renal Physiology, 1997, 273, G804-G811.                                                                       | 3.4  | 39        |