Marco Grilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/290722/publications.pdf

Version: 2024-02-01

170 papers 4,794 citations

38 h-index 64 g-index

172 all docs

172 docs citations

172 times ranked

2759 citing authors

#	Article	IF	CITATIONS
1	Singular Quasiparticle Scattering in the Proximity of Charge Instabilities. Physical Review Letters, 1995, 75, 4650-4653.	7.8	413
2	Non-Fermi-liquid behavior and d-wave superconductivity near the charge-density-wave quantum critical point. Zeitschrift Fýr Physik B-Condensed Matter, 1996, 103, 137-144.	1.1	152
3	Superconductivity, phase separation, and charge-transfer instability in theU=â^ž limit of the three-band model of theCuO2planes. Physical Review Letters, 1991, 67, 259-262.	7.8	144
4	Fermi-liquid parameters and superconducting instabilities of a generalizedt-Jmodel. Physical Review Letters, 1990, 64, 1170-1173.	7.8	139
5	Small-polaron formation and optical absorption in Su-Schrieffer-Heeger and Holstein models. Physical Review B, 1997, 56, 4484-4493.	3.2	139
6	d-wave superconductivity near charge instabilities. Physical Review B, 1996, 54, 16216-16225.	3.2	137
7	Multiple quantum criticality in a two-dimensional superconductor. Nature Materials, 2013, 12, 542-548.	27.5	136
8	Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high- <i>T</i> _c superconductor. Science, 2019, 365, 906-910.	12.6	125
9	Electron-phonon interactions in the presence of strong correlations. Physical Review B, 1994, 50, 16880-16898.	3.2	116
10	Anomalous Isotopic Effect Near the Charge-Ordering Quantum Criticality. Physical Review Letters, 2001, 87, 056401.	7.8	106
11	Electron-Phonon Interaction Close to a Mott Transition. Physical Review Letters, 2005, 94, 026401.	7.8	102
12	Re-entrant charge order in overdoped (Bi,Pb)2.12Sr1.88CuO6+ \hat{l} outside the pseudogap regime. Nature Materials, 2018, 17, 697-702.	27.5	93
13	First-Order Pairing Transition and Single-Particle Spectral Function in the Attractive Hubbard Model. Physical Review Letters, 2002, 88, 126403.	7.8	90
14	Charge-density waves and superconductivity as an alternative to phase separation in the infinite-UHubbard-Holstein model. Physical Review B, 1996, 54, 12443-12457.	3.2	84
15	Competing Orders in FeAs Layers. Physical Review Letters, 2008, 101, 186402.	7.8	84
16	Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices. Scientific Reports, 2015, 5, 12751.	3.3	82
17	Symmetry of Hole States in Superconducting Oxides: Correlation withTc. Physical Review Letters, 1991, 66, 3209-3212.	7.8	80
18	Two-gap model for underdoped cuprate superconductors. Physical Review B, 2000, 62, R9295-R9298.	3.2	77

#	Article	IF	CITATIONS
19	Phase Separation Close to the Density-Driven Mott Transition in the Hubbard-Holstein Model. Physical Review Letters, 2004, 92, 106401.	7.8	75
20	Dynamical charge density waves rule the phase diagram of cuprates. Physical Review B, 2017, 95, .	3.2	72
21	Apical oxygen ions and the electronic structure of the high-Tccuprates. Physical Review B, 1992, 45, 10647-10669.	3.2	68
22	Critical spin fluctuations and the origin of nematic order in Ba(Fe1â^'xCox)2As2. Nature Physics, 2016, 12, 560-563.	16.7	67
23	Mean-field theories of cuprate superconductors: A systematic analysis. Physical Review B, 1990, 42, 329-341.	3.2	63
24	Intrinsic Instability of Electronic Interfaces with Strong Rashba Coupling. Physical Review Letters, 2012, 109, 196401.	7.8	60
25	STRIPE FORMATION: A QUANTUM CRITICAL POINT FOR CUPRATE SUPERCONDUCTORS. Journal of Physics and Chemistry of Solids, 1998, 59, 1694-1698.	4.0	58
26	Joint superexchange–Jahn-Teller mechanism for layered antiferromagnetism inLaMnO3. Physical Review B, 1998, 57, R5583-R5586.	3.2	55
27	Phase Separation from Electron Confinement at Oxide Interfaces. Physical Review Letters, 2016, 116, 026804.	7.8	53
28	Effective medium theory for superconducting layers: A systematic analysis including space correlation effects. Physical Review B, 2011, 84, .	3.2	52
29	Charge collective modes and dynamic pairing in the three-band Hubbard model. II. Strong-coupling limit. Physical Review B, 1993, 47, 3331-3346.	3.2	50
30	Charge-Fluctuation Contribution to the Raman Response in Superconducting Cuprates. Physical Review Letters, 2005, 95, 117004.	7.8	50
31	Multiband superconductivity and nanoscale inhomogeneity at oxide interfaces. Physical Review B, 2013, 88, .	3.2	49
32	Collective excitations, photoemission spectra, and optical gaps in strongly correlated Fermi systems. Physical Review Letters, 1992, 69, 2009-2012.	7.8	48
33	Striped phases in the two-dimensional Hubbard model with long-range Coulomb interaction. Physical Review B, 1998, 58, 13506-13509.	3.2	44
34	Confinement of superconducting fluctuations due to emergent electronic inhomogeneities. Physical Review B, 2016, 93, .	3.2	41
35	Phase Separation and Superconductivity in the Kondo-like Spin-Hole Coupled Model. Europhysics Letters, 1991, 14, 597-602.	2.0	40
36	Single-particle properties of a model for coexisting charge and spin quasicritical fluctuations coupled to electrons. Physical Review B, 1999, 59, 14980-14991.	3.2	40

#	Article	IF	CITATIONS
37	Competition between electron pairing and phase coherence in superconducting interfaces. Nature Communications, 2018, 9, 407.	12.8	40
38	Spectral properties of incommensurate charge-density wave systems. European Physical Journal B, 2000, 13, 87-97.	1.5	39
39	Renormalized band structure of CuO2 layers in superconducting compounds: A mean-field approach. Physical Review B, 1990, 42, 6233-6237.	3.2	38
40	Phase diagrams of voltage-gated oxide interfaces with strong Rashba coupling. Physical Review B, 2014, 89, .	3.2	38
41	Thermoelectric power in disordered electronic systems near the Anderson transition. Physical Review B, 1988, 37, 6663-6666.	3.2	35
42	Theory of fluctuation conductivity from interband pairing in pnictide superconductors. Physical Review B, 2009, 79, .	3.2	34
43	Gap suppression at a Lifshitz transition in a multi-condensate superconductor. Nature Materials, 2019, 18, 948-954.	27.5	34
44	Mean-field phase diagram of a two-bandt-Jmodel forCuO2layers. Physical Review B, 1991, 43, 8000-8004.	3.2	33
45	PHASE SEPARATION AND SUPERCONDUCTIVITY IN THE U=â^ž LIMIT OF THE EXTENDED MULTIBAND HUBBARD MODEL. International Journal of Modern Physics B, 1991, 05, 309-321.	2.0	31
46	Theory of the Spin Galvanic Effect at Oxide Interfaces. Physical Review Letters, 2017, 119, 256801.	7.8	31
47	Anomalous Optical Absorption in the Normal State of Overdoped Cuprates Near the Charge-Ordering Instability. Physical Review Letters, 2002, 88, 147001.	7.8	30
48	Phase separation, charge-transfer instability, and superconductivity in the three-band extended Hubbard model: Weak-coupling theory. Physical Review B, 1991, 43, 13724-13727.	3.2	29
49	Functional-integral formulation of the slave-boson approach: Beyond the mean-field treatment with the correct continuum limit. Physics Reports, 1994, 241, 291-369.	25.6	29
50	Strange metal behaviour from charge density fluctuations in cuprates. Communications Physics, 2021, 4, .	5.3	29
51	Electron-Phonon Interaction in Strongly Correlated Systems. Advances in Condensed Matter Physics, 2010, 2010, 1-18.	1.1	28
52	Metal–superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems. New Journal of Physics, 2013, 15, 023014.	2.9	26
53	Possible occurrence of band interplay in high Tc superconductors. Physica C: Superconductivity and the Applications, 1988, 153-155, 1659-1660. Extracting the dynamical effective interaction and competing order from an analysis of Raman spectra	1,2	25
	of the high-temperature La <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< th=""><th>, ,</th><th></th></mml:mrow<></mml:msub></mml:math>	, ,	

display="inline"><mml:msub><mml:mrow /><mml:msub><mml:mo>â^'</mml:mo>cmml:mi></mml:mi></mml:mrow></mml:msub><amml:matbass
/><mml:mi></mml:mi></mml:mrow></mml:msub><amml:matbass
xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mi></mml:mi></mml:msub></mml:math>CuO<mml:math xmlns:mml="http://www.w3.org/1998/M"

#	Article	IF	Citations
55	Stripe Formation in Electron-Doped Cuprates. Physical Review Letters, 2000, 84, 5375-5378.	7.8	23
56	Influence of incommensurate dynamic charge-density-wave scattering on the photoemission line shape of superconducting high-Tccuprates. Physical Review B, 2001, 63, .	3.2	23
57	Checkerboard and stripe inhomogeneities in cuprates. Physical Review B, 2007, 75, .	3.2	23
58	Charge instabilities and electron-phonon interaction in the Hubbard-Holstein model. Physical Review B, 2009, 79, .	3.2	23
59	Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates. Nature Communications, 2015, 6, 7691.	12.8	23
60	Stabilization of A-type layered antiferromagnetic phase in LaMnO by cooperative Jahn-Teller deformations. European Physical Journal B, 2000, 17, 103-109.	1.5	20
61	Extended paraconductivity regime in underdoped cuprates. Physical Review B, 2005, 72, .	3.2	20
62	Small polaron formation in many-particle states of the Hubbard-Holstein model: The one-dimensional case. European Physical Journal B, 1999, 11, 551.	1.5	20
63	Three-bandt-Jmodel: A systematic large-Nanalysis. Physical Review B, 1994, 49, 6971-6984.	3.2	19
64	Fermi surface dichotomy in systems with fluctuating order. Physical Review B, 2009, 79, .	3.2	19
65	Inhomogeneous multi carrier superconductivity at LaXO ₃ /SrTiO ₃ (X = Al or Ti) oxide interfaces. Superconductor Science and Technology, 2015, 28, 014002.	3.5	19
66	Majorana Fermions in One-Dimensional Structures at LaAlO3/SrTiO3 Oxide Interfaces. Condensed Matter, 2018, 3, 37.	1.8	19
67	Magnetic and charge-transfer phase separation in the three-bandt-Jmodel. Physical Review B, 1995, 51, 9286-9293.	3.2	18
68	Large-N analysis of the local quantum critical point and the spin-liquid phase. Physical Review B, 2003, 67, .	3.2	17
69	Nematic phase without Heisenberg physics in FeAs planes. Physical Review B, 2011, 84, .	3.2	17
70	Stripes in cuprate superconductors: Excitations and dynamic dichotomy. Physica C: Superconductivity and Its Applications, 2012, 481, 132-145.	1.2	17
71	Exact canonical averages from microcanonical dynamics for quantum systems. Physical Review Letters, 1989, 62, 2889-2892.	7.8	16
72	Jahn-Teller, charge and magnetic ordering in half-doped manganese oxides. European Physical Journal B, 2001, 22, 157-165.	1.5	16

#	Article	IF	CITATIONS
73	Optical conductivity near finite-wavelength quantum criticality. Physical Review B, 2007, 75, .	3.2	16
74	Intrinsic spin Hall effect in systems with striped spin-orbit coupling. Europhysics Letters, 2015, 112, 17004.	2.0	16
75	Charge collective modes and dynamic pairing in the three-band Hubbard model. I. Weak-coupling limit. Physical Review B, 1993, 47, 3323-3330.	3.2	15
76	Theory of isotope dependence of photoemission spectra of high-Tcsuperconducting cuprates. Physical Review B, 2005, 72, .	3.2	15
77	Pseudo-gap as a signature of inhomogeneous superconductivity in oxide interfaces. Superconductor Science and Technology, 2015, 28, 045004.	3.5	15
78	KONDO LATTICE HAMILTONIAN FOR HIGH Tc SUPERCONDUCTORS. International Journal of Modern Physics B, 1988, 02, 659-665.	2.0	14
79	The physics of the stripe quantum critical point in the superconducting cuprates. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1715-1718.	1.2	14
80	Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors. Physical Review B, 2018, 98, .	3.2	14
81	Dissipation-driven strange metal behavior. Communications Physics, 2022, 5, .	5.3	14
82	Charge fluctuations in the four-band extended Hubbard model. Physical Review B, 1995, 52, 6880-6893.	3.2	13
83	Influence of electron-phonon interaction on superexchange. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 227, 120-126.	2.1	13
84	Charge and spin inhomogeneity as a key to the physics of the high-Tc cuprates. Physica B: Condensed Matter, 2000, 280, 196-200.	2.7	13
85	Effect of mesoscopic inhomogeneities on local tunneling density of states in cuprates. Physical Review B. 2005. 71 Evidence for phonon-like charge and spin fluctuations from an analysis of angle-resolved	3.2	13
86	photoemission spectra of La <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml< td=""><td>b> <\$a2ml:n</td><td>nath3Sr<mml:< td=""></mml:<></td></mml<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	b> < \$ a 2 ml:n	nat h3 Sr <mml:< td=""></mml:<>
87	/> <mml:mi>x</mml:mi> CuO		

#	Article	IF	Citations
91	SINGLE PARTICLE AND OPTICAL GAPS IN CHARGE-TRANSFER INSULATORS. International Journal of Modern Physics B, 1992, 06, 531-545.	2.0	11
92	Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates. Physical Review B, 2015, 91, .	3.2	11
93	Raman Response in the Nematic Phase of FeSe. Physical Review Letters, 2020, 124, 197602.	7.8	11
94	Progress in a Vacuum Weight Search Experiment. Physics, 2020, 2, 1-13.	1.4	11
95	Doping-dependent competition between superconductivity and polycrystalline charge density waves. SciPost Physics, 2020, 8, .	4.9	11
96	Protected superconductivity at the boundaries of charge-density-wave domains. New Journal of Physics, 2020, 22, 073025.	2.9	11
97	Paraconductivity in layered cuprates behaves as if due to pairing of nearly free quasiparticles. Physical Review B, 2009, 79, .	3.2	10
98	High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue. Frontiers in Bioengineering and Biotechnology, 2015, 3, 133.	4.1	10
99	The charge-density-wave quantum-critical-point scenario. Physica C: Superconductivity and Its Applications, 1997, 282-287, 260-263.	1.2	9
100	Hidden ferronematic order in underdoped cuprates. Physical Review B, 2013, 87, .	3.2	9
101	Possible Mechanisms of Electronic Phase Separation in Oxide Interfaces. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1273-1277.	1.8	9
102	Matrix field theory for disordered electron systems. Nuclear Physics B, 1988, 295, 422-442.	2.5	8
103	Incommensurate charge-density-wave instability in the extended three-band Hubbard model. Physical Review B, 1998, 57, 4382-4396.	3.2	8
104	Fermi surface and gap parameter in high-Tc superconductors: the Stripe Quantum Critical Point scenario. Physica C: Superconductivity and Its Applications, 1999, 317-318, 230-237.	1,2	8
105	Small polaron formation in many-particle states of the Hubbard-Holstein model: The one-dimensional case. European Physical Journal B, 1999, 11, 551-557.	1.5	8
106	Doping-driven transition to a time-reversal breaking state in the phase diagram of the cuprates. Physical Review B, 2003, 67, .	3.2	8
107	Spectral signatures of critical charge and spin fluctuations in cuprates. Physica B: Condensed Matter, 2009, 404, 3070-3074.	2.7	8
108	Phase separation and superconductivity. Physica Scripta, 1992, T45, 81-84.	2.5	8

#	Article	IF	CITATIONS
109	Effective electron–electron and electron–phonon interactions in the Hubbard–Holstein model. Nuclear Physics B, 2006, 744, 277-294.	2.5	7
110	Influence of correlations on transitive electron-phonon couplings in cuprate superconductors. Physical Review B, 2011, 83, .	3.2	7
111	INHOMOGENEOUS ELECTRON GAS AT OXIDE INTERFACES WITH STRONG RASHBA SPIN–ORBIT COUPLING. Spin, 2014, 04, 1440004.	1.3	7
112	Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems. Europhysics Letters, 2015, 109, 17006.	2.0	7
113	The Archimedes experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 646-647.	1.6	7
114	Inhomogeneous Rashba spin–orbit coupling and intrinsic spin-Hall effect. Journal of Magnetism and Magnetic Materials, 2017, 440, 63-65.	2.3	7
115	High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. European Physical Journal Plus, 2021, 136, 1.	2.6	7
116	Model of Quasiparticles Coupled to a Frequency-Dependent Charge-Density-Wave Order Parameter in Cuprate Superconductors. Physical Review Letters, 2009, 103, 217005.	7.8	6
117	Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces. Journal of Physics and Chemistry of Solids, 2019, 128, 118-129.	4.0	6
118	Comment on â€~â€~Electronic model for superconductivity''. Physical Review Letters, 1994, 72, 3626-36	267.8	5
119	Phase separation and superconductivity in strongly interacting electron systems. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2155-2156.	1.2	5
120	Phase separation and charge density waves: Possible sources of non-Fermi liquid behavior and pairing in high-temperature superconductors. Journal of Superconductivity and Novel Magnetism, 1996, 9, 413-424.	0.5	5
121	On the contribution of nearly critical spin and charge collective modes to the Raman spectra of high-Tc cuprates. Journal of Magnetism and Magnetic Materials, 2009, 321, 686-689.	2.3	5
122	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	2.6	5
123	Two-gap <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">s</mml:mi><mml:mo>\hat{A}_{\pm}</mml:mo></mml:msub></mml:math> -wave superconductivity at an oxide interface. Physical Review B, 2022, 105, .	3.2	5
124	Disordered electron systems with Hubbard interaction. Physical Review B, 1986, 34, 5907-5908.	3.2	4
125	Comment on "Effects of Strong Coulomb Correlations on the Phonon-Mediated Superconductivity: A Model Inspired by Copper Oxides― Physical Review Letters, 1995, 74, 1488-1488.	7.8	4
126	Stripe ordering and two-gap model for underdoped cuprates. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1739-1742.	1,2	4

#	Article	IF	CITATIONS
127	Kosterlitz-Thouless vs. Ginzburg-Landau description of 2D superconducting fluctuations. European Physical Journal B, 2000, 13, 609-612.	1.5	4
128	Interplay between density and superconducting quantum critical fluctuations. Journal of Physics Condensed Matter, 2015, 27, 425701.	1.8	4
129	Glue function of optimally and overdoped cuprates from inversion of the Raman spectra. Journal of Physics Condensed Matter, 2016, 28, 065701.	1.8	4
130	Casimir energy for two and three superconducting coupled cavities: Numerical calculations. European Physical Journal Plus, 2017, 132, 1.	2.6	4
131	The Strange-Metal Behavior of Cuprates. Condensed Matter, 2022, 7, 29.	1.8	4
132	Small Polaron Formation in Strongly Correlated Electronic Systems. Journal of Superconductivity and Novel Magnetism, 1999, 12, 75-77.	0.5	3
133	Low-energy signatures of charge and spin fluctuations in Raman and optical spectra of the cuprates. Journal of Physics and Chemistry of Solids, 2008, 69, 2155-2159.	4.0	3
134	Effect of anomalous diffusion of fluctuating Cooper pairs on the density of states of superconducting NbN thin films. Physical Review B, 2019, 100, .	3.2	3
135	Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment. European Physical Journal Plus, 2022, 137, .	2.6	3
136	Disorder effects in thet-Jmodel. Physical Review B, 1995, 51, 11996-11999.	3.2	2
137	Single-particle spectra near a stripe instability. Physica B: Condensed Matter, 2000, 284-288, 983-984.	2.7	2
138	Strong correlation, electron–phonon interaction and critical fluctuations: isotope effect, pseudogap formation, and phase diagram of the cuprates. Journal of Physics and Chemistry of Solids, 2002, 63, 2219-2224.	4.0	2
139	Collective transport and optical absorption near the stripe criticality. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 134-135.	2.3	2
140	Charge critical fluctuations in cuprates: Isotope effect, pseudogap, conductivity and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 2006, 67, 160-164.	4.0	2
141	Charge inhomogeneity coexisting with large Fermi surfaces. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1176-1177.	1.2	2
142	Dynamical charge and spin density wave scattering in cuprate superconductors. New Journal of Physics, 2010, 12, 105010.	2.9	2
143	Spin excitations of ferronematic order in underdoped cuprate superconductors. Scientific Reports, 2015, 4, 5319.	3.3	2
144	Non-equilibrium Spin Currents in Systems with Striped Rashba Spin-Orbit Coupling. Journal of Superconductivity and Novel Magnetism, 2017, 30, 123-128.	1.8	2

#	Article	IF	Citations
145	Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model. Condensed Matter, 2020, 5, 36.	1.8	2
146	Superconductivity, phase separation and charge transfer instability in the $U=\hat{a}^*$ limit of the three band model of the CuO2 planes. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1525-1526.	1.2	1
147	Role of electron-lattice interactions in determining the magnetic structure of insulating manganites. European Physical Journal Special Topics, 1999, 09, Pr10-335-Pr10-336.	0.2	1
148	Fermi surface and photoemission lineshape of incommensurate CDW systems. International Journal of Modern Physics B, 2000, 14, 3679-3684.	2.0	1
149	The Stripe-Phase Quantum-Critical-Point Scenario for Hight-Tc Superconductors. , 2002, , 45-53.		1
150	Electron–phonon interaction in proximity of a Mott transition. Physica B: Condensed Matter, 2005, 359-361, 636-638.	2.7	1
151	Disorder effects in the quantum Heisenberg model: Extended dynamical mean-field theory analysis. Physical Review B, 2007, 75, .	3.2	1
152	Spectroscopic evidences of quantum critical charge fluctuations in cuprates. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1103-1104.	1.2	1
153	Dynamics of Electronic Inhomogeneities in Cuprates. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1177-1179.	1.8	1
154	Finite-Frequency Dissipation in Two-Dimensional Superconductors with Disorder at the Nanoscale. Nanomaterials, $2021,11,1888.$	4.1	1
155	Phase Separation as a Possible Scenario for High T c Superconductors: A Particular Overview. , 1994, , 12-25.		1
156	The stripe-quantum-critical-point as a key to the physics of cuprates. European Physical Journal Special Topics, 1999, 09, Pr10-329-Pr10-332.	0.2	1
157	Single-particle spectra and Fermi surface near a stripe instability. European Physical Journal Special Topics, 1999, 09, Pr10-337-Pr10-338.	0.2	1
158	Archimedes experiment: weighing the vacuum. , 2018, , .		1
159	On the Superconducting Critical Temperature of Heavily Disordered Interfaces Hosting Multi-Gap Superconductivity. Coatings, 2022, 12, 30.	2.6	1
160	Symmetry of hole states in superconducting oxides: correlation with Tc. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1417-1418.	1.2	0
161	Role of the long-range Coulomb interaction on the formation of striped phases in the two-dimensional Hubbard model. , 1999, , .		0
162	Fermi Surface and Electronic Structure of Incommensurate Charge-Density Wave Systems. Journal of Superconductivity and Novel Magnetism, 2000, 13, 911-912.	0.5	0

#	Article	IF	CITATIONS
163	On Localization Effects in Underdoped Cuprates. , 2002, , 361-367.		O
164	Domain Wall Structures in the Two-Dimensional Hubbard Model with Long-Range Coulomb Interaction., 2002, , 151-157.		0
165	FIRST-ORDER PAIRING TRANSITION AND PHASE SEPARATION IN THE ATTRACTIVE HUBBARD MODEL. International Journal of Modern Physics B, 2003, 17, 590-596.	2.0	O
166	Disordered loops in the two-dimensional antiferromagnetic spin–fermion model. Nuclear Physics B, 2008, 795, 578-595.	2.5	0
167	Publisher's Note: Hidden ferronematic order in underdoped cuprates [Phys. Rev. B 87 , 035138 (2013)]. Physical Review B, 2013, 87, .	3.2	O
168	Magnetic field induced transition in superconducting LaTiO3/SrTiO3 interfaces. Journal of Physics: Conference Series, 2013, 449, 012035.	0.4	0
169	Archimedes: A feasibility study of an experiment to weigh the electromagnetic vacuum. , 2017, , .		0
170	On the Evaluation of the Spin Galvanic Effect in Lattice Models with Rashba Spin-Orbit Coupling. Condensed Matter, 2018, 3, 22.	1.8	O