

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2907043/publications.pdf Version: 2024-02-01

YANG GAO

#	Article	IF	CITATIONS
1	Highly Stretchable and Selfâ€Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Advanced Electronic Materials, 2019, 5, 1900285.	5.1	288
2	Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research, 2008, 42, 4923-4928.	11.3	281
3	Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 2013, 51, 52-58.	10.3	242
4	Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light: Science and Applications, 2012, 1, e6-e6.	16.6	158
5	Highly Efficient and Recyclable Carbon Soot Sponge for Oil Cleanup. ACS Applied Materials & Interfaces, 2014, 6, 5924-5929.	8.0	157
6	Laser Direct Writing of Ultrahigh Sensitive SiCâ€Based Strain Sensor Arrays on Elastomer toward Electronic Skins. Advanced Functional Materials, 2019, 29, 1806786.	14.9	147
7	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	10.3	122
8	Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.	5.5	112
9	Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Applied Physics Letters, 2011, 98, .	3.3	109
10	A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology, 2018, 29, 115502.	2.6	94
11	Self-assembled 3D flower-like Fe ₃ O ₄ /C architecture with superior lithium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 24940-24948.	10.3	88
12	Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 37760-37766.	8.0	83
13	Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4, 4892.	3.3	78
14	Skin-Contactable and Antifreezing Strain Sensors Based on Bilayer Hydrogels. Chemistry of Materials, 2020, 32, 8938-8946.	6.7	77
15	Single‣tep Formation of Graphene on Dielectric Surfaces. Advanced Materials, 2013, 25, 630-634.	21.0	75
16	High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection. Nanoscale, 2017, 9, 17948-17956.	5.6	75
17	Laser micro-structured pressure sensor with modulated sensitivity for electronic skins. Nanotechnology, 2019, 30, 325502.	2.6	72
18	3D Printing of Flexible Strain Sensor Array Based on UVâ€Curable Multiwalled Carbon Nanotube/Elastomer Composite. Advanced Materials Technologies, 2021, 6, .	5.8	72

Yang Gao

#	Article	IF	CITATIONS
19	High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Advanced Composites and Hybrid Materials, 2021, 4, 514-520.	21.1	70
20	Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing. Sensors and Actuators A: Physical, 2018, 284, 260-265.	4.1	67
21	A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. Journal of Materials Chemistry C, 2020, 8, 2074-2085.	5.5	67
22	Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites. Nanotechnology, 2018, 29, 235501.	2.6	64
23	3Dâ€Printed Coaxial Fibers for Integrated Wearable Sensor Skin. Advanced Materials Technologies, 2019, 4, 1900504.	5.8	58
24	Sandpaper-molded wearable pressure sensor for electronic skins. Sensors and Actuators A: Physical, 2018, 280, 205-209.	4.1	43
25	Low-Temperature Wearable Strain Sensor Based on a Silver Nanowires/Graphene Composite with a Near-Zero Temperature Coefficient of Resistance. ACS Applied Materials & Interfaces, 2021, 13, 55307-55318.	8.0	41
26	Production of few-layer graphene through liquid-phase pulsed laser exfoliation of highly ordered pyrolytic graphite. Applied Surface Science, 2012, 258, 9092-9095.	6.1	40
27	Flexible organohydrogel ionic skin with Ultra-Low temperature freezing resistance and Ultra-Durable moisture retention. Journal of Colloid and Interface Science, 2022, 608, 396-404.	9.4	37
28	High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes. RSC Advances, 2013, 3, 20613.	3.6	36
29	Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8, 351-378.	3.7	36
30	High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation. Scientific Reports, 2015, 5, 16133.	3.3	34
31	Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation. Lab on A Chip, 2019, 19, 2651-2662.	6.0	34
32	Laser-microengineered flexible electrodes with enhanced sensitivity for wearable pressure sensors. Sensors and Actuators A: Physical, 2018, 281, 124-129.	4.1	31
33	Fast Growth of Diamond Crystals in Open Air by Combustion Synthesis with Resonant Laser Energy Coupling. Crystal Growth and Design, 2010, 10, 1762-1766.	3.0	30
34	Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sensors and Actuators A: Physical, 2019, 299, 111625.	4.1	27
35	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	2.6	27
36	Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Scientific Reports, 2017, 7, 947.	3.3	24

Yang Gao

#	Article	IF	CITATIONS
37	Laser Direct Writing of Flexible Sensor Arrays Based on Carbonized Carboxymethylcellulose and Its Composites for Simultaneous Mechanical and Thermal Stimuli Detection. ACS Applied Materials & Interfaces, 2021, 13, 10171-10180.	8.0	24
38	A hollow tubular NiCo layacknered double hydroxide@Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery. Journal of Energy Chemistry, 2022, 70, 593-603.	12.9	24
39	3D Printed Reduced Graphene Oxide/Elastomer Resin Composite with Structural Modulated Sensitivity for Flexible Strain Sensor. Advanced Engineering Materials, 2022, 24, 2101068.	3.5	21
40	Enhancement of ansamitocin P-3 production in <i>Actinosynnema pretiosum</i> by a synergistic effect of glycerol and glucose. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 143-152.	3.0	20
41	Dielectric elastomer actuators based on stretchable and self-healable hydrogel electrodes. Royal Society Open Science, 2019, 6, 182145.	2.4	20
42	Mask-Free Preparation of Patterned Carbonized Carboxymethyl Cellulose on Fabrics for Flexible Electronics. ACS Applied Electronic Materials, 2020, 2, 855-862.	4.3	20
43	Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection. Measurement: Journal of the International Measurement Confederation, 2021, 169, 108348.	5.0	18
44	ELECTROSORPTION OF FeCl ₃ SOLUTIONS WITH CARBON NANOTUBES AND NANOFIBERS FILM ELECTRODES GROWN ON GRAPHITE SUBSTRATES. Surface Review and Letters, 2007, 14, 1033-1037.	1.1	17
45	Laser-assisted nanofabrication of carbon nanostructures. Journal of Laser Applications, 2012, 24, .	1.7	17
46	Low-Temperature Growth of Crystalline Gallium Nitride Films Using Vibrational Excitation of Ammonia Molecules in Laser-Assisted Metalorganic Chemical Vapor Deposition. Crystal Growth and Design, 2014, 14, 6248-6253.	3.0	17
47	Maskless Formation of Conductive Carbon Layer on Leather for Highly Sensitive Flexible Strain Sensors. Advanced Electronic Materials, 2020, 6, 2000549.	5.1	14
48	An enzyme-free capacitive glucose sensor based on dual-network glucose-responsive hydrogel and coplanar electrode. Analyst, The, 2021, 146, 213-221.	3.5	14
49	Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle. Science and Engineering of Composite Materials, 2018, 25, 621-631.	1.4	13
50	Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Advances, 2020, 10, 18694-18703.	3.6	12
51	Wearable pressure sensor using UV-patternable silver nanowire/polydimethylsiloxane composite. Materials Research Express, 2019, 6, 095087.	1.6	10
52	Crack-Insensitive Wearable Electronics Enabled Through High-Strength Kevlar Fabrics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1230-1236.	2.5	9
53	Improved adhesion between nickel–titanium SMA and polymer matrix via acid treatment and nano-silica particles coating. Advanced Composite Materials, 2018, 27, 331-348.	1.9	9
54	Open-air combustion synthesis of three-dimensional graphene for oil absorption and energy storage. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 238-239, 149-154.	3.5	8

Yang Gao

#	Article	IF	CITATIONS
55	CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum. New Biotechnology, 2022, 66, 61-69.	4.4	8
56	POSS Polyimide Sealed Flexible Tripleâ€Junction GaAs Thinâ€Film Solar Cells for Space Applications. Advanced Materials Technologies, 2021, 6, 2100603.	5.8	7
57	Seed-Free Growth of Diamond Patterns on Silicon Predefined by Femtosecond Laser Direct Writing. Crystal Growth and Design, 2013, 13, 716-722.	3.0	6
58	Localization and Imaging of Micro-Cracks Using Nonlinear Lamb Waves with Imperfect Group-Velocity Matching. Applied Sciences (Switzerland), 2021, 11, 8069.	2.5	5
59	Oxidative peeling of carbon black nanoparticles. RSC Advances, 2015, 5, 92539-92544.	3.6	4
60	Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800466.	5.8	4
61	Polyhedral oligomeric silsesquioxane polyimide nanocomposites for color filters and flexible conductive films. Journal of Applied Polymer Science, 2021, 138, 50372.	2.6	3
62	Three-dimensional micro/nano-fabrication by integration of additive and subtractive femtosecond-laser direct writing processes. , 2012, , .		1
63	POSS Polyimide Sealed Flexible Tripleâ€Junction GaAs Thinâ€Film Solar Cells for Space Applications (Adv.) Tj ETQ	q1_1 _. 0.78	4314 rgBT /C
64	Charge Manipulation Based Selective Functionalization of 3D Printed Structures for Functional Devices. Advanced Materials Technologies, 0, , 2100694.	5.8	1
65	What Can Lasers Do in the Nano-Fabrication of Carbon Nanotube Based Devices?. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
66	Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	0
67	Carbon Nano-Onion Ultracapacitor Model. Materials Research Society Symposia Proceedings, 2013, 1541, 81801.	0.1	0
68	Stretchable Electronics: Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics (Adv. Mater. Technol. 4/2019). Advanced Materials Technologies, 2019, 4, 1970024.	5.8	0
69	Fabricating patterned polyelectrolyte brushes by dynamic microprojection lithography for selective electroless metal deposition. Journal of Applied Polymer Science, 2021, 138, 50249.	2.6	0
70	On- and off-resonance vibrational excitations of ethylene molecules in laser-assisted combustion diamond synthesis. , 2014, , .		0