Kaplan Kirakci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906704/publications.pdf

Version: 2024-02-01

50 papers	1,694 citations	24 h-index	276875 41 g-index
55	55	55	1377
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Cs2Mo6X14 (X = Br or I) Hexamolybdenum Cluster Halides: Efficient Mo6 Cluster Precursors for Solution Chemistry Syntheses. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 411-416.	1.2	143
2	A Highly Luminescent Hexanuclear Molybdenum Cluster – A Promising Candidate toward Photoactive Materials. European Journal of Inorganic Chemistry, 2012, 2012, 3107-3111.	2.0	123
3	A comparative study of the redox and excited state properties of $(nBu4N)2[Mo6X14]$ and $(nBu4N)2[Mo6X8(CF3COO)6]$ (X = Cl, Br, or l). Dalton Transactions, 2013, 42, 7224.	3.3	123
4	X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorganic Chemistry, 2016, 55, 803-809.	4.0	105
5	Luminescent Hydrogel Particles Prepared by Self-Assembly of \hat{l}^2 -Cyclodextrin Polymer and Octahedral Molybdenum Cluster Complexes. Inorganic Chemistry, 2014, 53, 13012-13018.	4.0	80
6	Water-soluble octahedral molybdenum cluster compounds Na2[Mo6l8(N3)6] and Na2[Mo6l8(NCS)6]: Syntheses, luminescence, and in vitro studies. Inorganica Chimica Acta, 2016, 441, 42-49.	2.4	67
7	Nanoscaled porphyrinic metal–organic frameworks: photosensitizer delivery systems for photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 1815-1821.	5.8	62
8	Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomaterials Science, 2019, 7, 1386-1392.	5.4	62
9	Hexamolybdenum Cluster Complexes with Pyrene and Anthracene Carboxylates: Ultrabright Red Emitters with the Antenna Effect. European Journal of Inorganic Chemistry, 2014, 2014, 2331-2336.	2.0	59
10	From Simple Monopyridine Clusters [Mo6Br13(Py-R)][n-Bu4N] and Hexapyridine Clusters [Mo6X8(Py-R)6][OSO2CF3]4(X = Br or I) to Cluster-Cored Organometallic Stars, Dendrons, and Dendrimers. Inorganic Chemistry, 2006, 45, 1156-1167.	4.0	56
11	Tetranuclear Copper(I) lodide Complexes: A New Class of X-ray Phosphors. Inorganic Chemistry, 2017, 56, 4609-4614.	4.0	56
12	Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 4301-4307.	5.8	51
13	Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes [$\{Re < sub > 6 < sub > Q < sub > 8 < sub > 6 < sub > 6 < sub > 3 < sup > 4â \(c < sup > 6 < sup > $	4.0	47
14	Host–Guest Binding Hierarchy within Redox―and Luminescenceâ€Responsive Supramolecular Selfâ€Assembly Based on Chalcogenide Clusters and γâ€Cyclodextrin. Chemistry - A European Journal, 2018, 24, 13467-13478.	3.3	43
15	Nanocluster cores (X=Br, I): From inorganic solid state compounds to hybrids. Inorganica Chimica Acta, 2006, 359, 1705-1709.	2.4	42
16	Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25127-25136.	8.0	39
17	Water-soluble Re ₆ -clusters with aromatic phosphine ligands – from synthesis to potential biomedical applications. Inorganic Chemistry Frontiers, 2019, 6, 882-892.	6.0	34
18	Mo6Br8-Cluster-cored organometallic stars and dendrimers. Comptes Rendus Chimie, 2005, 8, 1789-1797.	0.5	31

#	Article	IF	Citations
19	Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorganic Chemistry, 2019, 58, 16546-16552.	4.0	29
20	A water-soluble octahedral molybdenum cluster complex as a potential agent for X-ray induced photodynamic therapy. Biomaterials Science, 2021, 9, 2893-2902.	5.4	28
21	Hybrid Organic/Inorganic Complexes Based on Electroactive Tetrathiafulvalene-Functionalized Diphosphanes Tethered to C3-Symmetrized Mo3Q4 (Q = S, Se) Clusters. Inorganic Chemistry, 2010, 49, 1894-1904.	4.0	26
22	Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorganic Chemistry, 2020, 59, 9287-9293.	4.0	26
23	The Simple Hexapyridine Cluster [Mo6Br8Py6][OSO2CF3]4 and Substituted Hexapyridine Clusters Including a Cluster-cored Polyolefin Dendrimer. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2746-2750.	1.2	25
24	Azaphthalocyanines: Red Fluorescent Probes for Cations. Chemistry - A European Journal, 2013, 19, 5025-5028.	3.3	24
25	Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Applied Materials & Interfaces, 2020, 12, 52492-52499.	8.0	23
26	Metalâ€Cation Recognition in Water by a Tetrapyrazinoporphyrazineâ€Based Tweezer Receptor. Chemistry - A European Journal, 2016, 22, 2417-2426.	3.3	22
27	Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN [–] in Biological Materials. ACS Sensors, 2019, 4, 1552-1559.	7.8	22
28	Synthesis and properties of charge-transfer solids with cluster units $[Mo6X14]2\hat{a}$ (X = Br, I). Journal of Materials Chemistry, 2012, 22, 19774.	6.7	19
29	Isotropic Threeâ€Dimensional Molecular Conductor Based on the Coronene Radical Cation. European Journal of Inorganic Chemistry, 2014, 2014, 3871-3878.	2.0	19
30	Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorganic Chemistry, 2019, 58, 10248-10259.	4.0	18
31	Unusual Coexistence of Magnetic and Nonmagnetic Mo6 Octahedral Clusters in a Chalcohalide Solid Solution: Synthesis, X-ray Diffraction, EPR, and DFT Investigations of Cs3Mo6li6li2â ⁻² xSeixla6. Chemistry - A European Journal, 2007, 13, 9608-9616.	3.3	17
32	Structure and properties of a novel cobaltate La0.30CoO2. Journal of Solid State Chemistry, 2011, 184, 2231-2237.	2.9	17
33	A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorganic Chemistry, 2022, 61, 5076-5083.	4.0	15
34	A hybrid material based on [Mo6Br14]2â° inorganic cluster units and [BEDO-TTF]+ organic monocationic radicals: Synthesis, structure and properties of (BEDO-TTF)2Mo6Br14(PhCN)4. Journal of Solid State Chemistry, 2006, 179, 3628-3635.	2.9	14
35	Assisted Crystallization of Organometallic Cations by Interplay with Inorganic Anionic Clusters Units: Synthesis and Characterizations of the [Cp*(dppe)Fe-NCMe]2·M6L14Series (M6L14= Cluster Unit:) Tj E	TQqlol 0.7	78 43 314 rgBT
36	A Series of Ultra-Efficient Blue Borane Fluorophores. Inorganic Chemistry, 2020, 59, 17058-17070.	4.0	13

#	Article	IF	CITATIONS
37	Solid state synthesis, structures and redox properties of the new [Mo6Bri7TeiBra6]3â^ and [Mo6Bri7SeiBra6]3â^ octahedral cluster units: Crystallochemistry of the Rb2+xMo6Bri8â^ xyixBra6 series (x=0.5 for Y=Te; 0.25⩽x⩽0.7 for Y=Se) and Rb2Mo6Br14. Journal of Solid State Chemistry, 2005, 1 3117-3129.	7 <mark>8</mark> ;9	12
38	The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy. Beilstein Journal of Nanotechnology, 2018, 9, 2960-2967.	2.8	12
39	Heterogeneous photoactive antimicrobial coatings based on a fluoroplastic doped with an octahedral molybdenum cluster compound. Dalton Transactions, 2021, 50, 8467-8475.	3.3	11
40	Synthesis and Crystal and Electronic Structures of the Na2(Sc4Nb2)(Nb6O12)3Octahedral Niobium Cluster Oxide. Structural Correlations between AnBM6L12(Z) Series and Chevrel Phases. Inorganic Chemistry, 2006, 45, 883-893.	4.0	10
41	Spin frustration in antiperovskite systems: (TTFË™ ⁺ or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 Journal of Materials Chemistry C, 2015, 3, 11046-11054.	0 587 Td 5.5	(TSFË™ <su 10</su
42	MollCluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the Suzuki-Miyaura Coupling Reaction. European Journal of Inorganic Chemistry, 2016, 2016, 4668-4673.	2.0	10
43	Avenue to X-ray-induced photodynamic therapy of prostatic carcinoma with octahedral molybdenum cluster nanoparticles. Journal of Materials Chemistry B, 2022, 10, 3303-3310.	5.8	9
44	Unprecedented $\hat{1}/43$ -Oi face-capping ligand in a [Mo6Bri6Li2Bra6] (L=0.5 O+0.5 Br) molybdenum cluster unit: crystal structure of the Cs3Mo6Br13O oxybromide. Comptes Rendus Chimie, 2005, 8, 1712-1718.	0.5	6
45	Unprecedented Association of [Mo6Bri7YiBra6]3â^' Cluster Units and [MolllBr6]3â^' Complexes: Synthesis, Crystal Structures, and Properties of the Double Salts Rb3[Mo6Bri7YiBra6](Rb3[MoBr6])3 (Y=Se, Te). Chemistry - A European Journal, 2006, 12, 6419-6425.	3.3	6
46	Polymeric Membranes Containing Iodine-Loaded UiO-66 Nanoparticles as Water-Responsive Antibacterial and Antiviral Surfaces. ACS Applied Nano Materials, 2022, 5, 1244-1251.	5.0	6
47	Elaboration of hybrid nanocluster materials by solution chemistry. Progress in Solid State Chemistry, 2005, 33, 81-88.	7.2	5
48	Photoelectron spectroscopy of [Mo6X14]2â^' dianions (X = Clâ€"l). Journal of Chemical Physics, 2019, 151, 194310.	3.0	3
49	Host-Guest Binding Hierarchy within Redox- and Luminescence-Responsive Supramolecular Self-Assembly Based on Chalcogenide Clusters and Î ³ -Cyclodextrin. Chemistry - A European Journal, 2018, 24, 13382-13382.	3.3	1
50	Synthesis and Characterization of Cs2Mo6X14 (X: Br or I) Hexamolybdenum Cluster Halides: Efficient Mo6 Cluster Precursors for Solution Chemistry Syntheses ChemInform, 2005, 36, no.	0.0	0