Erika Varkonyi-Gasic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3, 12.	4.3	1,048
2	A Systemic Small RNA Signaling System in Plants. Plant Cell, 2004, 16, 1979-2000.	6.6	488
3	FLOWERING LOCUS T Protein May Act as the Long-Distance Florigenic Signal in the Cucurbits. Plant Cell, 2007, 19, 1488-1506.	6.6	420
4	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
5	Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 2016, 67, 2159-2176.	4.8	163
6	Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany, 2012, 63, 797-807.	4.8	148
7	Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 2019, 5, 801-809.	9.3	148
8	FT and florigen long-distance flowering control in plants. Current Opinion in Plant Biology, 2016, 33, 77-82.	7.1	147
9	Quantitative Stem-Loop RT-PCR for Detection of MicroRNAs. Methods in Molecular Biology, 2011, 744, 145-157.	0.9	126
10	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	3.6	121
11	Mutagenesis of kiwifruit <i><scp>CENTRORADIALIS</scp></i> â€like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 2019, 17, 869-880.	8.3	106
12	Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biology, 2010, 10, 159.	3.6	102
13	Characterization of Buckwheat Seed Storage Proteins. Journal of Agricultural and Food Chemistry, 1996, 44, 972-974.	5.2	78
14	Homologs of <i><scp>FT</scp></i> , <i><scp>CEN</scp></i> and <i><scp>FD</scp></i> respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist, 2013, 198, 732-746.	7.3	72
15	Functional and expression analyses of kiwifruit <i>SOC1</i> -like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany, 2015, 66, 4699-4710.	4.8	68
16	Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiology, 2011, 31, 555-566.	3.1	62
17	Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 2017, 68, 1071-1082.	4.8	62
18	Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany, 2014, 65, 4985-4995.	4.8	59

Erika Varkonyi-Gasic

#	Article	IF	CITATIONS
19	Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Molecular Biology, 2012, 78, 417-429.	3.9	51
20	2S Albumin from Buckwheat (Fagopyrum esculentumMoench) Seeds. Journal of Agricultural and Food Chemistry, 1999, 47, 1467-1470.	5.2	46
21	Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biology, 2011, 11, 72.	3.6	43
22	Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany, 2017, 68, 1539-1553.	4.8	39
23	qRT-PCR of Small RNAs. Methods in Molecular Biology, 2010, 631, 109-122.	0.9	34
24	<i>Shy Girl</i> , a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytologist, 2021, 230, 1461-1475.	7.3	29
25	The White Clover enod40 Gene Family. Expression Patterns of Two Types of Genes Indicate a Role in Vascular Function. Plant Physiology, 2002, 129, 1107-1118.	4.8	28
26	Histone modification and activation by SOC1-like and drought stress-related transcription factors may regulate AcSVP2 expression during kiwifruit winter dormancy. Plant Science, 2019, 281, 242-250.	3.6	28
27	The Biosynthesis of 13S Buckwheat Seed Storage Protein. Journal of Plant Physiology, 1996, 147, 759-761.	3.5	26
28	A MADSâ€box gene with similarity to <i>FLC</i> is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist, 2022, 233, 2111-2126.	7.3	25
29	RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology, 2021, 41, 1510-1523.	3.1	24
30	Phase Change and Phenology in Trees. Plant Genetics and Genomics: Crops and Models, 2017, , 227-274.	0.3	22
31	Stem-Loop qRT-PCR for the Detection of Plant microRNAs. Methods in Molecular Biology, 2017, 1456, 163-175.	0.9	20
32	<scp>CRISPRâ€Cas9</scp> â€mediated mutagenesis of kiwifruit <scp><i>BFT</i></scp> genes results in an evergrowing but not early flowering phenotype. Plant Biotechnology Journal, 2022, 20, 2064-2076.	8.3	20
33	A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 2021, 21, 121.	3.6	18
34	Kiwifruit SVP2 controls developmental and drought-stress pathways. Plant Molecular Biology, 2018, 96, 233-244.	3.9	17
35	Overexpression of both AcSVP1 and AcSVP4 delays budbreak in kiwifruit A. chinensis var. deliciosa, but only AcSVP1 delays flowering in model plants. Environmental and Experimental Botany, 2018, 153, 262-270.	4.2	14
36	Ac <scp>FT</scp> promotes kiwifruit inÂvitro flowering when overexpressed and Arabidopsis flowering when expressed in the vasculature under its own promoter. Plant Direct, 2018, 2, e00068.	1.9	11

#	Article	IF	CITATIONS
37	An improved method for transformation of Actinidia arguta utilized to demonstrate a central role for MYB110 in regulating anthocyanin accumulation in kiwiberry. Plant Cell, Tissue and Organ Culture, 2020, 143, 291-301.	2.3	8
38	Two Subclasses of Differentially Expressed TPS1 Genes and Biochemically Active TPS1 Proteins May Contribute to Sugar Signalling in Kiwifruit Actinidia chinensis. PLoS ONE, 2016, 11, e0168075.	2.5	4
39	GENETIC REGULATION OF FLOWERING IN KIWIFRUIT. Acta Horticulturae, 2011, , 221-227.	0.2	2
40	ANALYSIS OF KIWIFRUIT MADS BOX GENES WITH POTENTIAL ROLES IN BUD DORMANCY AND FLOWER DEVELOPMENT. Acta Horticulturae, 2014, , 107-112.	0.2	2
41	Kiwifruit maturation, ripening and environmental response is not affected by CENTRORADIALIS (CEN) gene-editing. New Zealand Journal of Crop and Horticultural Science, 0, , 1-17.	1.3	2
42	Plant Molecular Responses to Phosphate-Starvation. , 2003, , 175-178.		0