
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relevant synthesis to manipulating non-planarity in dibenzo[g,p]chrysene: Substitution reactions at the bay. Tetrahedron Letters, 2022, 92, 153664.	1.4	3
2	Regio-defined syntheses of tetra-brominated dibenzo[g,p]chrysene scaffolds with high solubility. Tetrahedron Letters, 2021, 65, 152758.	1.4	5
3	Relevant analysis to the productivity in selective synthesis of dibenzo[g,p]chrysene derivatives. Tetrahedron, 2021, 95, 132353.	1.9	6

(1 2 2 420 - 1-6 1 0 -~ ^ c) т: г T

4	Solutiona€Processable Multia€Bubstituted Buckybowls: Synthesis of Diindeno(1,2,3,4a€•detg :1a€ ™,2a€ ™,3a€	±™,4a€™a 2.4	ۥmgnop) Ij E
5	Introverted BrÃ,nsted acid cavitands for selective conjugate addition reactions. Supramolecular Chemistry, 2021, 33, 253-265.	1.2	3
6	Regio-defined multi-hydroxylation of Dibenzo[g,p]chrysene. Tetrahedron Letters, 2020, 61, 152033.	1.4	9
7	Straightforward synthetic routes to well-soluble and regio-defined dibenzo[g,p]chrysene derivatives. Tetrahedron Letters, 2020, 61, 152406.	1.4	4
8	Inherently Chiral Cavitand Curvature: Diastereoselective Oxidation of Tethered Allylsilanes. European Journal of Organic Chemistry, 2019, 2019, 5862-5874.	2.4	3
9	Evaluation of the Catalytic Capability of <i>cis</i> ―and <i>trans</i> â€Diquinoxaline Spanned Cavitands. European Journal of Organic Chemistry, 2019, 2019, 6261-6268.	2.4	9
10	Stereoâ€Defined Synthetic Route to (<i>E</i>)―and (<i>Z</i>)â€Tamoxifen Derived from(<i>E</i>)â€1â€Bromoâ€2â€iodoalkenes ChemistrySelect, 2019, 4, 2721-2725.	1.5	4
11	Cavitand-driven Metal-catalyst Systems for Selective Transformation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 40-48.	0.1	0
12	Rational Design of a Metallocatalytic Cavitand for Regioselective Hydration of Specific Alkynes. European Journal of Organic Chemistry, 2018, 2018, 1136-1140.	2.4	30
13	Selective Catalytic Hydration of Alkynes in the Presence of Auâ€Cavitands: A Study in Structure–Activity Relationships. European Journal of Organic Chemistry, 2018, 2018, 5304-5311.	2.4	16
14	Regioselective Synthesis of [6,6]-Phenyl-C71-Butyric Acid Methyl Esters via Sulfur Ylides for Use in Bulk Heterojunction Solar Cells. Synlett, 2017, 28, 1457-1462.	1.8	5
15	Regio-selective cyanation of (Z)-(1,2-dibromo-2-arylvinyl)triisopropylsilane with suppression of halogen elimination. Tetrahedron Letters, 2017, 58, 1842-1845.	1.4	2
16	Recent developments of cavitand-recessed type metal catalysts. Tetrahedron Letters, 2017, 58, 4217-4226.	1.4	37
17	Stereo-defined synthesis of differentially all-carbon tetrasubstituted alkenes derived from (E) Tj ETQq1 1 0.784	314 rgBT /0 1.9	Overlock 10
18	Introverted Phosphorusâ€Au Cavitands for Catalytic Use. European Journal of Organic Chemistry, 2016, 2016, 813 820	2.4	28

2016, 813-820.

#	Article	IF	CITATIONS
19	An Introverted Bisâ€Au Cavitand and Its Catalytic Dimerization of Terminal Alkynes. European Journal of Organic Chemistry, 2016, 2016, 2514-2521.	2.4	32
20	Evaluation of the Reactivity of Metallocatalytic Cavities in the Dimerization of Terminal Alkynes. European Journal of Organic Chemistry, 2016, 2016, 4970-4975.	2.4	20
21	Evaluation of tuned phosphorus cavitands on catalytic cross-dimerization of terminal alkynes. Tetrahedron Letters, 2016, 57, 4754-4757.	1.4	15
22	Synthesis of tri-arylated cyclotriveratrilenes with ortho - and meta -extended functionality. Tetrahedron Letters, 2016, 57, 233-236.	1.4	2
23	Elucidation of reaction process through β-halogen elimination in CuCN-mediated cyanation of (E)-1-bromo-2-iodoalkene. Tetrahedron Letters, 2016, 57, 483-486.	1.4	12
24	Regio―and Stereoselective Synthesis of Vicinal (<i>Z</i>)â€Dihaloalkenylsilanes from Silyl Ethynylarenes. European Journal of Organic Chemistry, 2015, 2015, 938-943.	2.4	12
25	Cavitands with inwardly and outwardly directed functional groups. Tetrahedron Letters, 2015, 56, 4824-4828.	1.4	5
26	Pb, Sr and Ba calix[6]arene hexacarboxylic acid octahedral complexation: a dramatic effect of dealkylation. Supramolecular Chemistry, 2015, 27, 724-730.	1.2	3
27	Synthetic Development of Multi-tunable Halovinyl Scaffolds for Differentially Substituted Olefin Template Strategy. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 1212-1225.	0.1	1
28	Transition metal-free oxidation of ynamides for synthesis of α-keto-imides. Tetrahedron, 2014, 70, 3988-3993.	1.9	23
29	Regioâ€, and Stereoselective Iodobromination of Ynamides for Synthesis of (<i>E</i>)â€1â€Bromoâ€2â€iodoenamides. European Journal of Organic Chemistry, 2014, 2014, 3262-3267.	2.4	29
30	Synthesis of 1-haloethenamides from ynamide through halotrimethylsilane-mediated hydrohalogenation. Tetrahedron Letters, 2014, 55, 632-635.	1.4	30
31	Regio- and stereoselective synthesis of (E)-1-bromo-2-iodoalkenes through iodobromination of internal alkynes. Tetrahedron, 2014, 70, 8532-8538.	1.9	21
32	Regio- and stereoselective hydrohalogenation of ynamide components in 1,3-butadiynes with in situ generated HX. Tetrahedron Letters, 2014, 55, 2130-2133.	1.4	18
33	Selfâ€Folded Silyl Cavitands with In―and Outwardly Directed Allyl Groups. European Journal of Organic Chemistry, 2014, 2014, 1597-1601.	2.4	9
34	Regio- and stereospecific synthesis of (E)-α-iodoenamide moieties from ynamides through iodotrimethylsilane-mediated hydroiodation. Tetrahedron Letters, 2013, 54, 1309-1311.	1.4	35
35	Regio- and stereoselective synthesis of 1-(1-halovinyl)-1H-indoles from 1-ethynyl-1H-indoles with in situ generated HX. Tetrahedron Letters, 2013, 54, 2878-2881.	1.4	19
36	One-step synthesis of (1-iodovinyl) arenes from trimethylsilyl ethynylarene through iodotrimethylsilane-mediated hydroiodation. Tetrahedron Letters, 2012, 53, 3585-3589.	1.4	22

#	Article	IF	CITATIONS
37	Synthesis of unsymmetrically substituted pyrene derivatives through (6-bromo-3,8-dibutylpyren-1-yl)trimethylsilane. Tetrahedron Letters, 2011, 52, 6284-6287.	1.4	14
38	Asymmetric Suzuki–Miyaura cross-coupling of aryl chlorides with enhancement of reaction time and catalyst turnover. Tetrahedron Letters, 2011, 52, 2638-2641.	1.4	28
39	Recognition and Organocatalysis with a Synthetic Cavitand Receptor. Journal of the American Chemical Society, 2009, 131, 7402-7410.	13.7	89
40	Thermal cyclotrimerization of tetraphenyl[5]cumulene(tetraphenylhexapentaene) to a tricyclodecadiene derivative. Chemical Communications, 2009, , 574-576.	4.1	20
41	Straightforward access to functionalized pentaarylbenzene derivatives through a quick lithiation. Tetrahedron Letters, 2008, 49, 5244-5246.	1.4	8
42	A functionalized phosphine ligand with a pentaarylbenzene moiety in palladium-catalyzed Suzuki–Miyaura coupling of aryl chlorides. Tetrahedron Letters, 2008, 49, 7430-7433.	1.4	21
43	Synthesis of the functionalized cavitands with inwardly directed dialkylsilyl groups and phosphorous lone pairs. Tetrahedron Letters, 2008, 49, 4758-4762.	1.4	12
44	Organocatalysis In a Synthetic Receptor with an Inwardly Directed Carboxylic Acid. Journal of the American Chemical Society, 2008, 130, 5658-5659.	13.7	86
45	Stabilization of Labile Carbonyl Addition Intermediates by a Synthetic Receptor. Science, 2007, 317, 493-496.	12.6	260
46	Detection of Reactive Tetrahedral Intermediates in a Deep Cavitand with an Introverted Functionality. Journal of the American Chemical Society, 2007, 129, 15330-15339.	13.7	58
47	Cavitands with Introverted Functionality Stabilize Tetrahedral Intermediates. Journal of the American Chemical Society, 2007, 129, 15639-15643.	13.7	38
48	A Bowl-Shaped Phosphine as a Ligand in Palladium-Catalyzed Suzukiâ^'Miyaura Coupling of Aryl Chlorides:Â Effect of the Depth of the Bowl. Organic Letters, 2007, 9, 89-92.	4.6	88
49	Reaction of an introverted carboxylic acid with carbodiimide. Tetrahedron, 2007, 63, 6506-6511.	1.9	49
50	Palladium-catalyzed oxidation of cyclohexanones to conjugated enones using molecular oxygen. Tetrahedron Letters, 2007, 48, 6860-6862.	1.4	42
51	Metal complexes-catalyzed hydrolysis and alcoholysis of organic substrates and their application to kinetic resolution. Journal of Organometallic Chemistry, 2007, 692, 472-480.	1.8	19
52	A Reversible Reaction Inside a Self-Assembled Capsule. Journal of the American Chemical Society, 2006, 128, 9308-9309.	13.7	65
53	Phosphines Having a 2,3,4,5-Tetraphenylphenyl Moiety:Â Effective Ligands in Palladium-Catalyzed Transformations of Aryl Chlorides. Organometallics, 2006, 25, 4665-4669.	2.3	101
54	Experimental and computational probes of the space in a self-assembled capsule. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8934-8936.	7.1	35

#	Article	IF	CITATIONS
55	Experimental and Computational Probes of a Self-Assembled Capsule. Organic Letters, 2006, 8, 2925-2928.	4.6	13
56	MALDI TOF Mass Study on Oligomerization of Pd(OAc)2(L)2(L = Pyridine Derivatives):  Relevance to Pd Black Formation in Pd-Catalyzed Air Oxidation of Alcohols. Organic Letters, 2005, 7, 4677-4679.	4.6	22
57	Kinetic Resolution of Axially Chiral 2,2â€~-Dihydroxy-1,1â€~-biaryls by Palladium-Catalyzed Alcoholysis. Journal of the American Chemical Society, 2005, 127, 10474-10475.	13.7	95
58	A Bowl-Shaped Phosphine as a Ligand in Rhodium-Catalyzed Hydrosilylation:Â Rate Enhancement by a Mono(phosphine) Rhodium Species. Organometallics, 2005, 24, 3468-3475.	2.3	78
59	Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols. Journal of the American Chemical Society, 2004, 126, 6554-6555.	13.7	306
60	Lithium Amide Assisted Asymmetric Mannich-Type Reactions of Menthyl Acetate with PMP-Aldimines. Organic Letters, 2004, 6, 1721-1723.	4.6	48
61	Rate Enhancement with a Bowl-Shaped Phosphane in the Rhodium-Catalyzed Hydrosilylation of Ketones. Angewandte Chemie - International Edition, 2003, 42, 1287-1289.	13.8	69