
Shujuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906569/publications.pdf Version: 2024-02-01

SHUULAN CHEN

#	Article	IF	CITATIONS
1	The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17200-17205.	3.3	188
2	Tissue-specific, Inducible, and Hormonal Control of the Human UDP-Glucuronosyltransferase-1 (UGT1) Locus. Journal of Biological Chemistry, 2005, 280, 37547-37557.	1.6	113
3	Expression of the Human UGT1 Locus in Transgenic Mice by 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic Acid (WY-14643) and Implications on Drug Metabolism through Peroxisome Proliferator-Activated Receptor α Activation. Drug Metabolism and Disposition, 2007. 35. 419-427.	1.7	105
4	Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19143-19148.	3.3	94
5	Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the <i>UDP glucuronosyltransferase 1</i> (<i>UGT1</i>) locus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5024-5029.	3.3	90
6	Disruption of the Ugt1 Locus in Mice Resembles Human Crigler-Najjar Type I Disease. Journal of Biological Chemistry, 2008, 283, 7901-7911.	1.6	77
7	Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes. Journal of Hepatology, 2016, 64, 1315-1326.	1.8	75
8	The Role of the Ah Receptor and p38 in Benzo[a]pyrene-7,8-dihydrodiol and Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced Apoptosis. Journal of Biological Chemistry, 2003, 278, 19526-19533.	1.6	73
9	Mice with hyperbilirubinemia due to Gilbert's syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E244-E252.	1.8	66
10	Reduced Expression of UGT1A1 in Intestines of Humanized UGT1 Mice via Inactivation of NF-κB Leads to Hyperbilirubinemia. Gastroenterology, 2012, 142, 109-118.e2.	0.6	51
11	ERK Kinase Inhibition Stabilizes the Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2005, 280, 4350-4359.	1.6	50
12	Pregnaneâ€xâ€receptor controls hepatic glucuronidation during pregnancy and neonatal development in humanized <i>UGT1</i> mice. Hepatology, 2012, 56, 658-667.	3.6	48
13	A Humanized <i>UGT1</i> Mouse Model Expressing the <i>UGT1A1</i> * <i>28</i> Allele for Assessing Drug Clearance by UGT1A1-Dependent Glucuronidation. Drug Metabolism and Disposition, 2010, 38, 879-886.	1.7	44
14	Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31259-31266.	3.3	43
15	Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicology and Applied Pharmacology, 2015, 289, 124-132.	1.3	40
16	Developmental Onset of Bilirubin-induced Neurotoxicity Involves Toll-like Receptor 2-dependent Signaling in Humanized UDP-glucuronosyltransferase1 Mice. Journal of Biological Chemistry, 2014, 289, 4699-4709.	1.6	39
17	Crypt Organoid Culture as an In Vitro Model in Drug Metabolism and Cytotoxicity Studies. Drug Metabolism and Disposition, 2017, 45, 748-754.	1.7	39
18	Reduced Myelination and Increased Glia Reactivity Resulting from Severe Neonatal Hyperbilirubinemia. Molecular Pharmacology, 2016, 89, 84-93.	1.0	29

Shujuan Chen

#	Article	IF	CITATIONS
19	Developmental, Genetic, Dietary, and Xenobiotic Influences on Neonatal Hyperbilirubinemia. Molecular Pharmacology, 2017, 91, 545-553.	1.0	24
20	A review of the ethnobotanical value, phytochemistry, pharmacology, toxicity and quality control of Tussilago farfara L. (coltsfoot). Journal of Ethnopharmacology, 2021, 267, 113478.	2.0	20
21	Humanized <i>UGT1</i> Mice, Regulation of <i>UGT1A1</i> , and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metabolism and Disposition, 2018, 46, 1745-1755.	1.7	18
22	Intestinal NCoR1, a regulator of epithelial cell maturation, controls neonatal hyperbilirubinemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1432-E1440.	3.3	17
23	Isothiocyanates induce UGT1A1 in humanized UGT1 mice in a CAR dependent fashion that is highly dependent upon oxidative stress. Scientific Reports, 2017, 7, 46489.	1.6	17
24	Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia. Scientific Reports, 2021, 11, 11107.	1.6	12
25	NCoR1 Protects Mice From Dextran Sodium Sulfate–Induced Colitis by Guarding Colonic Crypt Cells From Luminal Insult. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 133-147.	2.3	11
26	Differential Role of Liver X Receptor (LXR) <i>α</i> and LXR <i>β</i> in the Regulation of UDP-Glucuronosyltransferase 1A1 in Humanized <i>UGT1</i> Mice. Drug Metabolism and Disposition, 2020, 48, 255-263.	1.7	11
27	Cadmium and arsenic override NF-κB developmental regulation of the intestinal UGT1A1 gene and control of hyperbilirubinemia. Biochemical Pharmacology, 2016, 110-111, 37-46.	2.0	10
28	Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation. Drug Metabolism and Disposition, 2021, 49, 12-19.	1.7	8
29	Reduction of p53 by Knockdown of the UGT1 Locus in Colon Epithelial Cells Causes an Increase in Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 63-76.e5.	2.3	6
30	Intestinal UDP-Glucuronosyltransferase 1A1 and Protection against Irinotecan-Induced Toxicity in a Novel UDP-Glucuronosyltransferase 1A1 Tissue-Specific Humanized Mouse Model. Drug Metabolism and Disposition, 2022, 50, 33-42.	1.7	3
31	CYP1A1 regulation by oral exposure to benzo[a]pyrene using a <i>CYP1A1</i> ^{GFP} transgenic mouse model. FASEB Journal, 2006, 20, A263.	0.2	0
32	Hepatic PXR represses UGT1A1 gene expression during neonatal development. FASEB Journal, 2012, 26, 1052.4.	0.2	0
33	Breast milk represses UDPâ€glucuronosyltransferase (UGT) 1A1 expression in the gastrointestinal tract, increasing the risk for severe hyperbilirubinemia and brain damage. FASEB Journal, 2012, 26, 850.12.	0.2	0
34	Regulation of Hepatic UGT1A4 by Liver X Receptor LXRα, and not LXRβ in hUGT1 Mice. FASEB Journal, 2018, 32, 826.7.	0.2	0
35	Generation of an Adult Hyperbilirubinemia Model in Liverâ€specific Humanized <i>UGT1A1*6</i> Mice. FASEB Journal, 2018, 32, 563.9.	0.2	0