
Thomas Philip P Runarsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906364/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2000, 4, 284-294.	7.5	1,410
2	Search Biases in Constrained Evolutionary Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2005, 35, 233-243.	3.3	363
3	Reliability of quantitative EEG features. Clinical Neurophysiology, 2007, 118, 2162-2171.	0.7	163
4	Coevolving Game-Playing Agents: Measuring Performance and Intransitivities. IEEE Transactions on Evolutionary Computation, 2013, 17, 213-226.	7.5	86
5	Support vector machines and dynamic time warping for time series. , 2008, , .		56
6	Coevolution Versus Self-Play Temporal Difference Learning for Acquiring Position Evaluation in Small-Board Go. IEEE Transactions on Evolutionary Computation, 2005, 9, 628-640.	7.5	53
7	Acoustic emission based fatigue failure criterion for CFRP. International Journal of Fatigue, 2008, 30, 11-20.	2.8	47
8	Constrained Evolutionary Optimization by Approximate Ranking and Surrogate Models. Lecture Notes in Computer Science, 2004, , 401-410.	1.0	41
9	Supervised Learning Linear Priority Dispatch Rules for Job-Shop Scheduling. Lecture Notes in Computer Science, 2011, , 263-277.	1.0	33
10	Ordinal Regression in Evolutionary Computation. Lecture Notes in Computer Science, 2006, , 1048-1057.	1.0	24
11	Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem. Journal of Scheduling, 2018, 21, 413-428.	1.3	20
12	Preference Learning for Move Prediction and Evaluation Function Approximation in Othello. IEEE Transactions on Games, 2014, 6, 300-313.	1.7	18
13	Test–retest reliability and feature selection in physiological time series classification. Computer Methods and Programs in Biomedicine, 2012, 105, 50-60.	2.6	16
14	Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms. Studies in Computational Intelligence, 2010, , 255-267.	0.7	11
15	Effect of look-ahead search depth in learning position evaluation functions for Othello using -greedy exploration. , 2007, , .		10
16	Detecting fraudulent whiplash claims by support vector machines. Biomedical Signal Processing and Control, 2010, 5, 311-317.	3.5	9
17	Imitating play from game trajectories: Temporal difference learning versus preference learning. , 2012, , .		7
18	Reducing Random Fluctuations in Mutative Self-adaptation. Lecture Notes in Computer Science, 2002, , 194-203.	1.0	7

#	Article	IF	CITATIONS
19	Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling. Lecture Notes in Computer Science, 2012, , 160-174.	1.0	7
20	AN ASYNCHRONOUS PARALLEL EVOLUTION STRATEGY. International Journal of Computational Intelligence and Applications, 2003, 03, 381-394.	0.6	6
21	Entropy-Driven Evolutionary Approaches to the Mastermind Problem. , 2010, , 421-431.		6
22	Stochastic Master Surgical Scheduling Under Ward Uncertainty. Springer Proceedings in Mathematics and Statistics, 2020, , 163-176.	0.1	4
23	Evolutionary Learning of Linear Composite Dispatching Rules for Scheduling. Studies in Computational Intelligence, 2016, , 49-62.	0.7	3
24	Sampling strategies in ordinal regression for surrogate assisted evolutionary optimization. , 2011, , .		2
25	Towards an evolutionary guided exact solution to elective surgery scheduling under uncertainty and ward restrictions. , 2019, , .		2
26	Approximating Probabilistic Constraints for Surgery Scheduling Using Neural Networks. Lecture Notes in Computer Science, 2019, , 643-654.	1.0	2
27	Determining the Characteristic of Difficult Job Shop Scheduling Instances for a Heuristic Solution Method. Lecture Notes in Computer Science, 2012, , 408-412.	1.0	2
28	Evolutionary Learning of Weighted Linear Composite Dispatching Rules for Scheduling. , 2014, , .		2
29	An Evolutionary Approach to the Discovery of Hybrid Branching Rules for Mixed Integer Solvers. , 2015, , .		1
30	Generating Training Data for Learning Linear Composite Dispatching Rules for Scheduling. Lecture Notes in Computer Science, 2015, , 236-248.	1.0	1
31	Learning Heuristic Policies – A Reinforcement Learning Problem. Lecture Notes in Computer Science, 2011, , 423-432.	1.0	1
32	Improving Curriculum Timetabling Models Using Clustering. , 2015, , .		0
33	Evolutionary Ensemble Strategies for Heuristic Scheduling. , 2015, , .		0
34	On imitating Connect-4 game trajectories using an approximate n-tuple evaluation function. , 2015, , .		0
35	Asynchronous Parallel (1+1)-CMA-ES for Constrained Global Optimisation. , 2014, , .		0
36	Evolution of Gene Coordination Networks. Lecture Notes in Computer Science, 1999, , 430-437.	1.0	0

#	Article	IF	CITATIONS
37	Deep Preference Neural Network for Move Prediction in Board Games. Communications in Computer and Information Science, 2018, , 34-45.	0.4	0
38	Learning Probabilistic Constraints for Surgery Scheduling Using a Support Vector Machine. Lecture Notes in Computer Science, 2020, , 121-134.	1.0	0