Yilin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906259/publications.pdf Version: 2024-02-01

Υπιν Ζηγο

#	Article	IF	CITATIONS
1	The DNA dioxygenase Tet1 regulates H3K27 modification and embryonic stem cell biology independent of its catalytic activity. Nucleic Acids Research, 2022, 50, 3169-3189.	14.5	27
2	NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nature Cell Biology, 2020, 22, 640-650.	10.3	52
3	Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells. Cell Reports, 2019, 28, 1993-2003.e5.	6.4	18
4	Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis. Cell Reports, 2019, 28, 2480-2490.e4.	6.4	66
5	Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics and Chromatin, 2019, 12, 27.	3.9	34
6	Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3. Open Biology, 2019, 9, 190220.	3.6	9
7	Bidirectional Analysis of Cryba4-Crybb1 Nascent Transcription and Nuclear Accumulation of Crybb3 mRNAs in Lens Fibers. , 2019, 60, 234.		11
8	Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Experimental Eye Research, 2019, 179, 32-46.	2.6	40
9	Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression. Cell Stem Cell, 2018, 22, 398-413.e7.	11.1	85
10	Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Reports, 2018, 25, 2510-2523.e4.	6.4	48
11	ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Molecular Cell, 2018, 72, 341-354.e6.	9.7	64
12	A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Experimental Eye Research, 2018, 175, 56-72.	2.6	37
13	ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546, 671-675.	27.8	70
14	N-myc regulates growth and fiber cell differentiation in lens development. Developmental Biology, 2017, 429, 105-117.	2.0	37
15	Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biology and Evolution, 2017, 9, 2075-2092.	2.5	20
16	Potential applications of catestatin in cardiovascular diseases. Biomarkers in Medicine, 2016, 10, 877-888.	1.4	7
17	Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics and Chromatin, 2016, 9, 37.	3.9	25