
Prescott L Deininger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2906152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Research, 2022, 50, 1888-1907.	6.5	9
2	Altered DNA repair creates novel Alu/Alu repeatâ€mediated deletions. Human Mutation, 2021, 42, 600-613.	1.1	9
3	Organ-, sex-Âand age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Research, 2021, 49, 5813-5831.	6.5	12
4	Comparative analysis on the expression of L1 loci using various RNA-Seq preparations. Mobile DNA, 2020, 11, 2.	1.3	12
5	RNA Next-Generation Sequencing and a Bioinformatics Pipeline to Identify Expressed LINE-1s at the Locus-Specific Level. Journal of Visualized Experiments, 2019, , .	0.2	9
6	The Paracaspase MALT1 Acts Independently of Pre-B-Cell Receptor Signaling As a Key Factor in Leukemic Cell Survival in Precursor B-Cell Acute Lymphoblastic Leukemia. Blood, 2019, 134, 1288-1288.	0.6	0
7	2057 L1 expression analysis in adipose-derived stem cells. Journal of Clinical and Translational Science, 2018, 2, 16-16.	0.3	0
8	Long-Distance Relationships: Suppression of Repeat-Mediated Deletions. Trends in Genetics, 2018, 34, 572-574.	2.9	5
9	The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition. Genetics, 2017, 205, 139-153.	1.2	31
10	Alu-Alu Recombinations in Genetic Diseases. , 2017, , 239-257.		0
11	A comprehensive approach to expression of L1 loci. Nucleic Acids Research, 2017, 45, e31-e31.	6.5	86
12	Transcription coupled repair and biased insertion of human retrotransposon L1 in transcribed genes. Mobile DNA, 2017, 8, 18.	1.3	3
13	Detection of LINE-1 RNAs by Northern Blot. Methods in Molecular Biology, 2016, 1400, 223-236.	0.4	11
14	Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes. PLoS ONE, 2016, 11, e0151367.	1.1	107
15	Alu elements and DNA double-strand break repair. Mobile Genetic Elements, 2015, 5, 81-85.	1.8	18
16	The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair. PLoS Genetics, 2015, 11, e1005016.	1.5	71
17	Sequencing, identification and mapping of primed L1 elements (SIMPLE) reveals significant variation in full length L1 elements between individuals. BMC Genomics, 2015, 16, 220.	1.2	33

18 Jerzy Jurka – 1950–2014. Mobile DNA, 2015, 6, 1.

1.3 42

#	Article	IF	CITATIONS
19	Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Frontiers in Genetics, 2015, 6, 358.	1.1	24
20	The aging clock and circadian control of metabolism and genome stability. Frontiers in Genetics, 2014, 5, 455.	1.1	38
21	LINE-1 and Alu retrotransposition exhibit clonal variation. Mobile DNA, 2013, 4, 16.	1.3	8
22	Alu elements: an intrinsic source of human genome instability. Current Opinion in Virology, 2013, 3, 639-645.	2.6	95
23	Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data. BMC Genomics, 2013, 14, 584.	1.2	6
24	HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology, 2013, 443, 69-79.	1.1	35
25	miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell Lines. PLoS ONE, 2012, 7, e31429.	1.1	15
26	Near-IR single fluorophore quenching system based on phthalocyanine (Pc) aggregation and its application for monitoring inhibitor/activator action on a therapeutic target: L1-EN. Analyst, The, 2011, 136, 1103.	1.7	18
27	Alu elements: know the SINEs. Genome Biology, 2011, 12, 236.	13.9	465
28	Alu distribution and mutation types of cancer genes. BMC Genomics, 2011, 12, 157.	1.2	39
29	All y'all need to know â€`bout retroelements in cancer. Seminars in Cancer Biology, 2010, 20, 200-210.	4.3	166
30	Meeting Report for Mobile DNA 2010. Mobile DNA, 2010, 1, 20.	1.3	0
31	Feedback inhibition of L1 and alu retrotransposition through altered double strand break repair kinetics. Mobile DNA, 2010, 1, 22.	1.3	14
32	Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Research, 2010, 38, 3909-3922.	6.5	206
33	Cross-Talk-Free Dual-Color Fluorescence Cross-Correlation Spectroscopy for the Study of Enzyme Activity. Analytical Chemistry, 2010, 82, 1401-1410.	3.2	16
34	Diverse <i>cis</i> factors controlling <i>Alu</i> retrotransposition: What causes <i>Alu</i> elements to die?. Genome Research, 2009, 19, 545-555.	2.4	70
35	Rare mutations of <i>FGFR2</i> causing apert syndrome: identification of the first partial gene deletion, and an <i>Alu</i> element insertion from a new subfamily. Human Mutation, 2009, 30, 204-211.	1.1	55
36	LINE dancing in the human genome: transposable elements and disease. Genome Medicine, 2009, 1, 97.	3.6	118

#	Article	IF	CITATIONS
37	Breaking the computational barrier: a divide-conquer and aggregate based approach for Alu insertion site characterisation. International Journal of Computational Biology and Drug Design, 2009, 2, 302.	0.3	6
38	ERCC1/XPF limits L1 retrotransposition. DNA Repair, 2008, 7, 983-989.	1.3	90
39	The impact of multiple splice sites in human L1 elements. Gene, 2008, 411, 38-45.	1.0	82
40	LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene, 2008, 419, 1-6.	1.0	84
41	L1 mobile element expression causes multiple types of toxicity. Gene, 2008, 419, 75-81.	1.0	128
42	Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome Research, 2008, 18, 343-358.	2.4	285
43	Requirements for polyadenylation at the $3\hat{a}\in^2$ end of LINE-1 elements. Gene, 2007, 390, 98-107.	1.0	29
44	Characterization of pre-insertion loci of de novo L1 insertions. Gene, 2007, 390, 190-198.	1.0	28
45	Abasic sites and survival in resected patients with non-small cell lung cancer. Cancer Letters, 2007, 246, 47-53.	3.2	7
46	8-Hydroxy-2′-deoxyguanosine (8-OH-dG) as a potential survival biomarker in patients with nonsmall-cell lung cancer. Cancer, 2007, 109, 574-580.	2.0	80
47	Ush1c216A knock-in mouse survives Katrina. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 616, 139-144.	0.4	31
48	Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 616, 46-59.	0.4	270
49	Emergence of primate genes by retrotransposon-mediated sequence transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17608-17613.	3.3	141
50	Aluinsertion polymorphisms in Native Americans and related Asian populations. Annals of Human Biology, 2006, 33, 142-160.	0.4	31
51	Applications of computational algorithm tools to identify functional SNPs in cytokine genes. Cytokine, 2006, 35, 62-66.	1.4	29
52	The Human LINE-1 Retrotransposon Creates DNA Double-strand Breaks. Journal of Molecular Biology, 2006, 357, 1383-1393.	2.0	431
53	LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Research, 2006, 34, 1512-1521.	6.5	180
54	Alu-linked hairpins efficiently mediate RNA interference with less toxicity than do H1-expressed short hairpin RNAs. Analytical Biochemistry, 2006, 349, 41-48.	1.1	11

#	Article	IF	CITATIONS
55	Alu Elements. , 2006, , 21-34.		3
56	The USH1C 216G?A splice-site mutation results in a 35-base-pair deletion. Human Genetics, 2005, 116, 225-227.	1.8	30
57	Worldwide Genetic Variation at the 3â€2-UTR Region of theLDLRGene: Possible Influence of Natural Selection. Annals of Human Genetics, 2005, 69, 389-400.	0.3	17
58	Heavy Metals Stimulate Human LINE-1 Retrotransposition. International Journal of Environmental Research and Public Health, 2005, 2, 14-23.	1.2	53
59	Nickel Stimulates L1 Retrotransposition by a Post-transcriptional Mechanism. Journal of Molecular Biology, 2005, 354, 246-257.	2.0	59
60	Human retroelements may introduce intragenic polyadenylation signals. Cytogenetic and Genome Research, 2005, 110, 365-371.	0.6	75
61	Tandem insertions of Alu elements. Cytogenetic and Genome Research, 2005, 108, 58-62.	0.6	16
62	Predicting Mammalian SINE Subfamily Activity from A-tail Length. Molecular Biology and Evolution, 2004, 21, 2140-2148.	3.5	14
63	Evolution of a Hypervariable Region of the Low Density Lipoprotein Receptor (LDLR) Gene in Humans and other Hominoids. Genetica, 2004, 121, 187-193.	0.5	3
64	Structure, diversity, and evolution of the 45-bp VNTR in intron 5 of the USH1C gene. Genomics, 2004, 83, 439-444.	1.3	1
65	Potential for Retroposition by Old Alu Subfamilies. Journal of Molecular Evolution, 2003, 56, 658-664.	0.8	22
66	RNA truncation by premature polyadenylation attenuates human mobile element activity. Nature Genetics, 2003, 35, 363-366.	9.4	241
67	Mobile elements and mammalian genome evolution. Current Opinion in Genetics and Development, 2003, 13, 651-658.	1.5	422
68	Active Alu Element "A-Tails": Size Does Matter. Genome Research, 2002, 12, 1333-1344.	2.4	127
69	Non-traditional Alu evolution and primate genomic diversity. Journal of Molecular Biology, 2002, 316, 1033-1040.	2.0	87
70	Mammalian Retroelements. Genome Research, 2002, 12, 1455-1465.	2.4	309
71	Shared Protein Components of SINE RNPs. Journal of Molecular Biology, 2002, 321, 423-432.	2.0	61
72	The USH1C 216G→A mutation and the 9-repeat VNTR(t,t) allele are in complete linkage disequilibrium in the Acadian population. Human Genetics, 2002, 110, 95-97.	1.8	17

#	Article	IF	CITATIONS
73	Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genetics, 2002, 30, 277-284.	9.4	395
74	Alu repeats and human genomic diversity. Nature Reviews Genetics, 2002, 3, 370-379.	7.7	1,245
75	Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. Journal of Molecular Biology, 2001, 311, 17-40.	2.0	152
76	Phylogenetic Analysis of the Friedreich Ataxia GAA Trinucleotide Repeat. Journal of Molecular Evolution, 2001, 52, 232-238.	0.8	24
77	Alu Insertion Polymorphisms for the Study of Human Genomic Diversity. Genetics, 2001, 159, 279-290.	1.2	127
78	AluY insertion (IVS4-52ins316alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency. Human Mutation, 2000, 15, 316-323.	1.1	42
79	Functional Expression of Three P2X2 Receptor Splice Variants From Guinea Pig Cochlea. Journal of Neurophysiology, 2000, 83, 1502-1509.	0.9	32
80	Potential Gene Conversion and Source Genes for Recently Integrated Alu Elements. Genome Research, 2000, 10, 1485-1495.	2.4	108
81	Upstream flanking sequences and transcription of SINEs 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2000, 302, 17-25.	2.0	74
82	Recently integrated human Alu repeats: finding needles in the haystack. , 2000, , 149-161.		0
83	Interspersed Repeat Insertion Polymorphisms for Studies of Human Molecular Anthropology. , 1999, , 201-212.		1
84	Recently integrated human Alu repeats: finding needles in the haystack. Genetica, 1999, 107, 149-161.	0.5	82
85	Alu Repeats and Human Disease. Molecular Genetics and Metabolism, 1999, 67, 183-193.	0.5	825
86	Identification and mutation analysis of a cochlear-expressed, zinc finger protein gene at the DFNB7/11 and dn hearing-loss-loci on human chromosome 9q and mouse chromosome 19. Gene, 1998, 215, 461-469.	1.0	32
87	Novel variant of the P2X2 ATP receptor from the guinea pig organ of Corti. Hearing Research, 1998, 121, 62-70.	0.9	58
88	Temporal changes in gene expression following cryogenic rat brain injury. Molecular Brain Research, 1998, 55, 9-19.	2.5	36
89	Simultaneous analysis of multiple gene expression patterns as a function of development, injury or senescence. Brain Research Protocols, 1998, 3, 1-6.	1.7	6
90	Assembly of a high-resolution map of the Acadian Usher syndrome region and localization of the nuclear EF-hand acidic gene. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1407, 84-91.	1.8	13

#	Article	IF	CITATIONS
91	The mouse deafness locus (dn) is associated with an inversion on chromosome 19. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1407, 257-262.	1.8	5
92	Recent B2 Element Insertions in the Mouse Genome. DNA Sequence, 1998, 8, 343-348.	0.7	9
93	BC1 RNA, the Transcript from A Master Gene for ID Element Amplification, Is Able to Prime Its Own Reverse Transcription. Nucleic Acids Research, 1997, 25, 1641-1648.	6.5	30
94	<i>Alu</i> Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa. Genome Research, 1997, 7, 1061-1071.	2.4	311
95	Evolution of B2 repeats: the muroid explosion. Genetica, 1997, 99, 1-13.	0.5	2
96	cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. Journal of Molecular Biology, 1997, 271, 222-234.	2.0	56
97	Identification and characterization of two polymorphic Ya5 Alu repeats. Mutation Research - Mutation Research Genomics, 1997, 382, 5-11.	1.2	14
98	Evolution of B2 repeats: the muroid explosion. Genetica, 1997, 99, 1-13.	0.5	31
99	Response. Journal of Molecular Evolution, 1997, 45, 7-8.	0.8	3
100	Comparative studies of the CAG repeats in the spinocerebellar ataxia type 1 (SCA1) gene. , 1997, 74, 488-493.		11
101	The Mobile Genetic Element "Alu" in the Human Genome. BioScience, 1996, 46, 32-41.	2.2	22
102	Recent Amplification of Rat ID Sequences. Journal of Molecular Biology, 1996, 261, 322-327.	2.0	39
103	DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic complement Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4360-4364.	3.3	27
104	Evolution, Expression, and Possible Function of a Master Gene for Amplification of an Interspersed Repeated DNA Family in Rodents. Progress in Molecular Biology and Translational Science, 1996, 52, 67-88.	1.9	32
105	SINEs, LINEs and retrotransposable elements: Functional implications. Journal of Molecular Evolution, 1996, 42, 1-1.	0.8	1
106	Standardized nomenclature for Alu repeats. Journal of Molecular Evolution, 1996, 42, 3-6.	0.8	261
107	Sporadic amplification of ID elements in rodents. Journal of Molecular Evolution, 1996, 42, 7-14.	0.8	47
108	The role and amplification of the HS Alu subfamily founder gene. Journal of Molecular Evolution, 1996, 42, 15-21.	0.8	20

#	Article	IF	CITATIONS
109	Genetic variation of recent Alu insertions in human populations. Journal of Molecular Evolution, 1996, 42, 22-29.	0.8	194
110	Characterization and population diversity of interspersed repeat sequence variants (IRS-morphs). Genome, 1996, 39, 688-696.	0.9	11
111	Analysis of CAG Repeat of the Machado-Joseph Gene in Human, Chimpanzee and Monkey Populations: A Variant Nucleotide is Associated with the Number of CAG Repeats. Human Molecular Genetics, 1996, 5, 207-213.	1.4	42
112	Polymorphic human specificAlu insertions as markers for human identification. Electrophoresis, 1995, 16, 1596-1601.	1.3	44
113	Identification and analysis of a â€~young' polymorphic Alu element. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 99-102.	2.4	42
114	Identification of a New Subclass of Alu DNA Repeats Which Can Function as Estrogen Receptor-dependent Transcriptional Enhancers. Journal of Biological Chemistry, 1995, 270, 22777-22782.	1.6	205
115	Transcription and processing of the rodent ID repeat family in germline and somatic cells. Nucleic Acids Research, 1995, 23, 2245-2251.	6.5	32
116	Sequence diversity and chromosomal distribution of "young―Alu repeats. Gene, 1995, 163, 273-278.	1.0	40
117	Alu Repeats: A Source for the Genesis of Primate Microsatellites. Genomics, 1995, 29, 136-144.	1.3	205
118	Dispersion and Insertion Polymorphism in Two Small Subfamilies of Recently Amplified HumanAluRepeats. Journal of Molecular Biology, 1995, 247, 418-427.	2.0	105
119	Identification of a human specificAlu insertion in the factor XIIIB gene. Genetica, 1994, 94, 1-8.	0.5	25
120	A consensus Alu repeat probe for physical mapping. Genetic Analysis, Techniques and Applications, 1994, 11, 34-38.	1.5	27
121	[16] Evolutionary analyses of repetitive DNA sequences. Methods in Enzymology, 1993, 224, 213-232.	0.4	25
122	Evolution of Retroposons. , 1993, , 157-196.		121
123	Protein binding sites within the human thymidine kinase promoter. Gene, 1992, 111, 249-254.	1.0	13
124	Regulation of rodent myelin proteolipid protein gene expression. Neuroscience Letters, 1992, 137, 56-60.	1.0	21
125	Characterization and Phylogenetic Significance of a Repetitive DNA Sequence from Whooping Cranes (Grus americana). Auk, 1992, 109, 73-79.	0.7	9
126	Master genes in mammalian repetitive DNA amplification. Trends in Genetics, 1992, 8, 307-311.	2.9	287

#	Article	IF	CITATIONS
127	An in vivo assay for measuring the recombination potential between DNA sequences in mammalian cells. Analytical Biochemistry, 1992, 205, 83-89.	1.1	11
128	A human-specific subfamily of Alu sequences. Genomics, 1991, 9, 481-487.	1.3	260
129	Enhanced evolutionary PCR using oligonucleotides with inosine at the 3′-terminus. Nucleic Acids Research, 1991, 19, 5081-5081.	6.5	33
130	Evolution of the master Alu gene(s). Journal of Molecular Evolution, 1991, 33, 311-320.	0.8	287
131	Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Research, 1991, 19, 1649-1656.	6.5	47
132	Amplification dynamics of human-specific (HS) alu family members. Nucleic Acids Research, 1991, 19, 3619-3623.	6.5	120
133	The rat thymidine kinase gene 5′ region: evolution of a promoter. DNA Sequence, 1991, 2, 129-131.	0.7	2
134	Structure and variability of recently inserted Alu family members. Nucleic Acids Research, 1991, 19, 698-698.	6.5	2
135	Molecular cloning: A laboratory manual. Analytical Biochemistry, 1990, 186, 182-183.	1.1	36
136	Gene Transfer into Glial Cells using Herpes Simplex Virus Vectors. Annals of the New York Academy of Sciences, 1990, 605, 346-349.	1.8	0
137	Structure and variability of recently inserted Alu family members. Nucleic Acids Research, 1990, 18, 6793-6798.	6.5	193
138	In vivotranscription of a cloned prosimian primate SINE sequence. Nucleic Acids Research, 1989, 17, 8669-8682.	6.5	14
139	[41] Full-Length cDNA clones: Vector-primed cDNA synthesis. Methods in Enzymology, 1987, 152, 371-389.	0.4	14
140	Sequence, structure and promoter characterization of the human thymidine kinase gene. Gene, 1987, 52, 267-277.	1.0	133
141	The recent evolution of mammalian repetitive DNA elements. Trends in Genetics, 1986, 2, 76-80.	2.9	166
142	Repeat sequence families derived from mammalian tRNA genes. Nature, 1985, 317, 819-822.	13.7	238
143	Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Research, 1985, 13, 8939-8954.	6.5	104
144	Nucleotide sequence and structure of integrated bovine leukemia virus long terminal repeats. Virology, 1985, 141, 162-166.	1.1	25

#	Article	IF	CITATIONS
145	DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature, 1984, 310, 207-211.	13.7	2,339
146	Random subcloning of sonicated DNA: Application to shotgun DNA sequence analysis. Analytical Biochemistry, 1983, 129, 216-223.	1.1	618
147	Approaches to rapid DNA sequence analysis. Analytical Biochemistry, 1983, 135, 247-263.	1.1	68
148	A second major class of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Research, 1983, 11, 7595-7610.	6.5	76
149	Species-specific homogeneity of the primate Alu family of repeated DNA sequences. Nucleic Acids Research, 1983, 11, 7579-7593.	6.5	53
150	Sequence analysis and in vitro transcription of portions of the epstein-barr virus genome. Journal of Cellular Biochemistry, 1982, 19, 267-274.	1.2	7
151	Renaturation rate studies of a single family of interspersed repeated sequences in human deoxyribonucleic acid. Biochemistry, 1981, 20, 3003-3010.	1.2	110
152	Base sequence studies of 300 nucleotide renatured repeated human DNA clones. Journal of Molecular Biology, 1981, 151, 17-33.	2.0	629
153	A mutation increasing the size of the polyoma virion proteins, VP2 and VP3. Virology, 1981, 109, 35-46.	1.1	11
154	Mutation near the polyoma DNA replication origin permits productive infection of F9 embryonal carcinoma cells. Cell, 1981, 23, 809-814.	13.5	240
155	Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III. Nucleic Acids Research, 1981, 9, 6439-6456.	6.5	125
156	Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature, 1980, 284, 372-374.	13.7	351
157	A dimer satellite sequence in bonnet monkey DNA consists of distinct monomer subunits. Journal of Molecular Biology, 1980, 136, 151-167.	2.0	39
158	ANALYSIS OF CLONED HUMAN UBIQUITOUS REPEATED DNA SEQUENCES. , 1980, , 369-378.		1
159	Regions of the polyoma genome coding for T antigens. Nucleic Acids Research, 1979, 7, 2275-2288.	6.5	20
160	The nucleotide sequence and genome organization of the polyoma early region: Extensive nucleotide and amino acid homology with SV40. Cell, 1979, 17, 715-724.	13.5	210
161	Nucleotide sequence and genetic organization of the polyoma late region: Features common to the polyoma early region and SV40. Cell, 1979, 18, 771-779.	13.5	72
162	A study of the evolution of repeated DNA sequences in primates and the existence of a new class of repetitive sequences in primates. Journal of Molecular Biology, 1979, 127, 437-460.	2.0	63

#	Article	IF	CITATIONS
163	A critical examination of possible fractionations of human DNA according to base composition. Nucleic Acids and Protein Synthesis, 1978, 520, 21-37.	1.7	2
164	An electron microscope study of the DNA sequence organization of the human genome. Journal of Molecular Biology, 1976, 106, 773-790.	2.0	123
165	Sequence organization of the human genome. Cell, 1975, 6, 345-358.	13.5	285